O nVI F ® | Standardizing IP Connectivity
for Physical Security

ONVIF®

Uplink Device Test Specification

Version 25.12

December 2025

www.onvif.org

OnviF’ | wsmanggres

© 2025 ONVIF, Inc. All rights reserved.

Recipients of this document may copy, distribute, publish, or display this document so long as this
copyright notice, license and disclaimer are retained with all copies of the document. No license is
granted to modify this document.

THIS DOCUMENT IS PROVIDED "AS 1S," AND THE CORPORATION AND ITS MEMBERS
AND THEIR AFFILIATES, MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THIS DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS
DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES
WERE REASONABLY FORESEEABLE, AND ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS DOCUMENT. THE FOREGOING DISCLAIMER AND
LIMITATION ON LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS
AND WARRANTIES MADE BY THE MEMBERS AND THEIR RESPECTIVE AFFILIATES TO
THE CORPORATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE
CORPORATION.

2 www.onvif.org

OnviF’ | wsmanggres

REVISION HISTORY

Vers. Date Description
23.06 Jan 04, 2023 | Initial version

25.06 Mar 04, 2025 | The following new test cases were added as a part of #301 task:

UPLINK-3-1-1 Uplink over WebSocket with mTLS Authentication
(new)

UPLINK-3-1-2 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic) (new)

UPLINK-3-1-3 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, private_key_ jwt) (new)

UPLINK-3-1-4 Uplink over WebSocket with mTLS Authentication -
Invalid Server Certificate (new)

UPLINK-3-1-5 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic) -
Invalid Uplink Client Certificate (new)

UPLINK-3-1-6 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic) -
Invalid Authentication Server Certificate (new)

Annex HelperCreateKeyPairAndReceivePublicKey Create Key Pair
and Receive Public Key (new)

Annex HelperGetAuthorizationServerConfigurations Get
Authorization Server Configurations List (added)

Annex HelperEmptySpaceForOneAuthorizationServerConfiguration
Make Sure That At Least One Authorization Server Configuration
Could Be Created (added)

Annex HelperCreateCertPathValidationPolicyWithCertID Create a
certification path validation policy with provided certificate identifier
(added)

Annex HelperCreateSignedCertificate Provide certificate signed by
private key of other certificate (added)

Annex HelperCreateCertPathValidationPolicyForAuthServer Create

a certification path validation policy for authentication server
configuration (added)

Introduction\Scope\Authentication and Authorization (new)

Test Overview\Test Policy\Authentication and Authorization (new)

25.12 Oct 02, 2025 | The following test and annexes were updated in the scope of #429
(Authorization server uri was replaced with Authentication server
metadata endpoint):

Annex HelperConfigureAndStartAuthServer Configure Authorization
Server On Device and Start It

UPLINK-3-1-2 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic)

www.onvif.org 3

O nVI F ® Standardizing IP Connectivity
for Physical Security

UPLINK-3-1-3 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, private_key_jwt)

UPLINK-3-1-5 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic) -
Invalid Uplink Client Certificate

UPLINK-3-1-6 Uplink over WebSocket with access token
authentication (OAuthClientCredentials, client_secret_basic) -
Invalid Authentication Server Certificate

4 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Table of Contents

1 INErOAUCTION ... 8
1.1 S Yoo] o 1= TSR 8
1.11 UpPliNK CONNECLION ... 9
1.1.2 Authentication and Authorizationccccooiiiiiii e 9
1.1.3 (O T oY= o 111 1= 10
2 Normative referencesccoocoiiiieei e ———— 11
3 Terms and Definitionscccccciiiiiiii e ——— 13
3.1 CONVENTIONS ...ttt e e e e e e e e e r e e e e s 13
3.2 D= o1 o] o PSSR 13
3.3 ADDIEVIALIONS ..o 13
4 L= O Y TN 14
41 TeSt SOtUD e 14
411 Network Configuration for DUTccoooiiiiiiiiiiiieee e 14
4.2 Prer@QUISITES ...vvuniie et e e e e e e e e e e e e e e e e e e 14
4.3 TESE POlICY e 14
4.31 Uplink Connection ... 15
4.3.2 Authentication and Authorizationcccccviiviiiiiiiiiiiiies 15
4.3.3 Capabilitiescoeviiiiiiiiiiiii e 16
5 UPHINK TESt CASEScueee s mmanan 18
5.1 Uplink CONNECLION ..o 18
511 UPLINK CONNECT AND DISCONNECTouvuiiiiiiiiiiiiiiiiiiiniiiiiiieeineiiennees 18
5.2 UPIINK STrEAMING ...t 20
5.2.1 UPLINK CONNECT AND STREAM — H.264 (RTP-Unicast/RTSP/
WEDSOCKEES) ..ttt 20
5.3 Authentication and AUthorizationcccc 21
5.3.1 Uplink over WebSocket with mTLS Authenticationccc. 21

5.3.2 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, client_secret_basiC)cccccoiiiii 26
5.3.3 Uplink over WebSocket with access token authentication

(OAuthClientCredentials, private_Key jWt)ooeiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeveeeeeees 32

5 www.onvif.org

OnviF | empnggre

5.3.4 Uplink over WebSocket with mTLS Authentication - Invalid Server

CertifiCAe .ooeii i e 38
5.3.5 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, client_secret_basic) - Invalid Uplink Client Certificate 41
5.3.6 Uplink over WebSocket with access token authentication

(OAuthClientCredentials, client_secret_basic) - Invalid Authentication Server

CertifiCate ... 46
54 (07T o= o111 =TSP PPPPPPUPPPPPPPIRS 50

5.4.1 GET SERVICES AND GET UPLINK SERVICE CAPABILITIES

CONSISTENCY ..ttt ettt ettt e bt e et ettt e e e e et e e e nnae e e annee s 50
Helper Procedures and Additional Notesccooieci e e e 53
A1 Clean Up Uplink Configurations ... 53
A.2 Configure Client CertifiCateccccoouuiiiiii e 53
A.3 Choose Client Certificate With Private Key ..., 55
A4 Upload PKCS#12 — no key pair eXistScooeveiieeiiieiieeeeeeeeeeeeeeeeeeeeee e 56
A5 Passphrases for test Casescoouiiiiiiiiiiiiiiiiiiiiiieee 58
A.6 Creating a PKCS#12 data structure with new CA-signed certificate signed by
new public key and private key with passphraseccccccccoi 58
A7 Provide CA Certificateoooiiiii e 59
A.8 Signature Algorithm Selection ... 60
A.9 7oYYL T (= VA o Y- | 62
A.10 Determine key pair generation pParamseeeeeememememememeneneeenieineeeneeenenne. 63
A.11 Creating a PKCS#12 data structure with existing CA-signed certificate and a
corresponding public key and private key with passphrasecccvvvviiiieeii i, 64
A.12 Create a self-signed certificateccccvvvvvviiiiii 65
A.13 Create @ KeY Pail ...cooeiiieieieee 67
A.14 Delete @ KEY Pl ... 69
A.15 Subject for a server certificate ... 70
A.16 Create and upload a CA-signed certificate for private keycocovvvvevvvvvviviennnnnenn. 70
A.17 Create a CA-signed certificate for the key pairccooooiiiiiiiiiiiii, 71
A.18 Creating a certificate from a PCKS#10 requestuuvvvevvimiiiiiiiiiiiiiiiiiiieininnennns 73

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

A.19 Uplink Connection Establishmentccoooiiiii 74
A.20 Device Configuration for Video Streamingccvviiiiiiiiiiiiiiiiee 76
A.21 Media2 Service Profile Configuration for Video Streamingcccccccecuvuenennnnnns 79
A.22 Removing Configurations from Media Profileccccc 84

A.23 Removing Audio Encoder Configuration and Metadata Configuration from

Media Profile ... e 86

A.24 Get STream Ui ... 87
A.25 Name and Token Parametersooccouviiiiiiiiiiiii e 88
A.26 Set Up Uplink CONNECLIONccooiiiiiiiiiiee e e 88
A.27 Media Streaming over WebSocket ... 90
A28 Get WebSocket URI ..o 92
A.29 Get Media2 Service Capabilitiesuuuuuuiuiuiuiiiiiiiiiiiiiiiiiiiiieeeees 92
A30 Web Socket Handshake ... 93
A.31 Sec-WebSocket-Key value generation ..o 94
A.32 Check of IP address type in response to RTSP DESCRIBEccccooeeiiiiiiiiinnnn. 95
A33 InValid RTP HEAETcoiiiiieiiie ettt 96
A.34 Get service capabilities for Advanced Security SErvicecccccccvvvvveviieeeiineennnn, 96

A.35 Create a certification path validation policy for authentication server

CONFIGUIALION .o 97
A.36 Create a certification path validation policy with provided certificate identifier 99
A.37 Provide certificate signed by private key of other certificatecccccccevvvvevenenn. 100

A.38 Make Sure That At Least One Authorization Server Configuration Could Be

L7 =T | (= SR 102
A.39 Get Authorization Server Configurations Listeuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 103
A.40 Create Key Pair and Receive PUDIIC KEYuuuuuiuimiuiiiiiiiiiiiiiiiiiieiieenees 104

www.onvif.org 7

OnviF’ | wsmanggres

1 Introduction

The goal of the ONVIF test specification set is to make it possible to realize fully interoperable
IP physical security implementation from different vendors. The set of ONVIF test specification
describes the test cases need to verify the [ONVIF Uplink Specification] and [ONVIF Conformance]
requirements. It also describes the test framework, test setup, pre-requisites, test policies needed
for the execution of the described test cases.

This ONVIF Uplink Test Specification acts as a supplementary document to the [ONVIF Uplink
Specification], illustrating test cases need to be executed and passed. And also this specification
acts as an input document to the development of test tool which will be used to test the ONVIF
device implementation conformance towards ONVIF standard. This test tool is referred as ONVIF
Client hereatfter.

1.1 Scope

This ONVIF Uplink Test Specification defines and regulates the conformance testing procedure for
the ONVIF conformant devices. Conformance testing is meant to be functional black-box testing.
The objective of this specification is to provide test cases to test individual requirements of ONVIF
devices according to ONVIF Uplink which is defined in [ONVIF Uplink Specification].

The principal intended purposes are:

» Provide self-assessment tool for implementations.

* Provide comprehensive test suite coverage for [ONVIF Network Interface Specs].
This specification does not address the following:

» Product use cases and non-functional (performance and regression) testing.

+ SOAP Implementation Interoperability test i.e. Web Service Interoperability Basic Profile
version 2.0 (WS-I BP 2.0).

» Network protocol implementation Conformance test for HTTP, HTTPS, RTP and RTSP
protocol.

* Poor streaming performance test (audio/video distortions, missing audio/video frames,
incorrect lib synchronization etc.).

Wi-Fi Conformance test

The set of ONVIF Test Specification will not cover the complete set of requirements as defined in
[ONVIF Uplink Specification]; instead it would cover subset of it. The scope of this specification is to

8 www.onvif.org

OnviF | gomansg

derive all the normative requirements of [ONVIF Uplink Specification] which are related to ONVIF

Uplink and some of the optional requirements.

This ONVIF Uplink Test Specification covers Uplink service which is a functional block of [ONVIF
Network Interface Specs]. The following sections give the brief overview of and scope of each
functional block.

1.1.1 Uplink Connection

The Connection section covers the test cases needed for initiating an uplink from a device to a
service endpoint. Once the connection is established the service endpoint acts as client.

The scope of this specification section is to cover the following functions:
+ Setting device uplink configuration.
» Connection establishment and teardown.
* Reconnecting on communication timeout.
+ Verification of authentication and user level.
* Responding to requests.

+ Streaming of video.

1.1.2 Authentication and Authorization

The Authentication and Authorization section covers the test cases needed for authentication and
authorization for uplink connection.

The scope of this specification section is to cover the following functions:
* mTLS authentication
» Access token authentication with following settings:
» OAuthClientCredentials, client_secret_basic
* OAuthClientCredentials, private_key_jwt
» Uplink authorization
+ Uplink client certificate validation

» Authorization server certificate validation

www.onvif.org 9

O nVI F ® Standardizing IP Connectivity
for Physical Security

1.1.3 Capabilities

The Capabilities section covers the test cases needed for getting capabilities from an ONVIF device.
The scope of this specification section is to cover the following functions:

» Getting Uplink service address with GetServices command via Device service

+ Getting capabilities with GetServiceCapabilities command

+ Getting capabilities with GetServices command via Device service

10 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

2 Normative references

* [ONVIF Conformance] ONVIF Conformance Process Specification:
https://www.onvif.org/profiles/conformance/

» [ONVIF Profile Policy] ONVIF Profile Policy:
https://www.onvif.org/profiles/

» [ONVIF Network Interface Specs] ONVIF Network Interface Specification documents:
https://www.onvif.org/profiles/specifications/

* [ONVIF Core Specs] ONVIF Core Specifications:
https://www.onvif.org/profiles/specifications/

* [ONVIF Uplink Specification] Uplink Specification:
https://www.onvif.org/profiles/specifications/

+ [ONVIF Base Test] ONVIF Base Device Test Specification:
https://www.onvif.org/profiles/conformance/device-test/

* [ONVIF RTSP via Media2 Test] Real Time Streaming using Media2 Test Specification:
https://www.onvif.org/profiles/specifications/

» [ISO/IEC Directives, Part 2] ISO/IEC Directives, Part 2, Annex H:
http://www.iso.org/directives

*+ [ISO 16484-5] ISO 16484-5:2014-09 Annex P:
https://www.iso.org/obp/ui/#!iso:std:63753:en

+ [SOAP 1.2, Part 1] W3C SOAP 1.2, Part 1, Messaging Framework:
http://www.w3.org/TR/soap12-part1/

* [XML-Schema, Part 1] W3C XML Schema Part 1: Structures Second Edition:
http://www.w3.org/TR/xmlschema-1/

* [XML-Schema, Part 2] W3C XML Schema Part 2: Datatypes Second Edition:

http://www.w3.org/TR/xmlschema-2/

www.onvif.org 11

https://www.onvif.org/profiles/conformance/
https://www.onvif.org/profiles/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/conformance/device-test/
https://www.onvif.org/profiles/specifications/
http://www.iso.org/directives
https://www.iso.org/obp/ui/#!iso:std:63753:en
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

O nVI F ® | Standardizing IP Connectivity
for Physical Security

» [WS-Security] "Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)",
OASIS Standard, February 2006.:

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-0s-
SOAPMessageSecurity.pdf

12 www.onvif.org

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

O n V I F ® Standardizing IP Connectivity
for Physical Security

3 Terms and Definitions

3.1 Conventions

The key words "shall", "shall not", "should", "should not", "may", "need not", "can", "cannot" in this
specification are to be interpreted as described in [ISO/IEC Directives Part 2].

3.2 Definitions

This section defines terms that are specific to the ONVIF Uplink Service and tests. For the list of
applicable general terms and definitions, please see [ONVIF Base Test].

Uplink Doing something in advance to prepare for something else.
Video Source Entity defined by [ONVIF Device I/O Specification]
Video Source Token Token referencing a Device 1/O Video Source

3.3 Abbreviations

This section describes abbreviations used in this document.

HTTP Hyper Text Transport Protocol.

AAC Advanced Audio Coding.

URI Uniform Resource Identifier.

WSDL Web Services Description Language.
XML eXtensible Markup Language.
JPEG Joint Photographic Experts Group.
TTL Time To Live.

www.onvif.org 13

OnviF | empnggre

4 Test Overview

This section provides information about the test setup procedure and required prerequisites, and
the test policies that should be followed for test case execution.

4.1 Test Setup

4.1.1 Network Configuration for DUT

The generic test configuration for the execution of test cases defined in this document is as shown
below (Figure 1).

Figure 4.1. Test Configuration for DUT

DUT: ONVIF device to be tested. Hereafter, this is referred to as DUT (Device Under Test).

ONVIF Client (Test Tool): Tests are executed by this system and it controls the behavior of the
DUT. It handles both expected and unexpected behavior.

Service Endpoint: Cloud connection endpoint according to the ONVIF Uplink Specification to which

the DUT can connect.

4.2 Prerequisites

The pre-requisites for executing the test cases described in this Test Specification are:
1. The DUT shall be configured with an IPv4 address.
2. The DUT shall be IP reachable [in the test configuration].
3. The DUT shall be able to be discovered by the Test Tool.

4. The DUT shall be configured with the time, i.e. manual configuration of UTC time and if NTP
is supported by the DUT then NTP time shall be synchronized with NTP Server.

5. The DUT time and Test tool time shall be synchronized with each other either manually or
by a common NTP server.

4.3 Test Policy

This section describes the test policies specific to the test case execution of each functional block.

14 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

The DUT shall adhere to the test policies defined in this section.

4.3.1 Uplink Connection

The test policies specific to the test case execution of all functional blocks:

» DUT shall give the Uplink Service entry point by GetServices command, if DUT supports this
service. Otherwise, these test cases will be skipped.

» DUT shall support the following commands:

+ GetUplinks

SetUplink

DeleteUplink

GetDevicelnformation (Device Mgmt Service)

GetUsers (Device Mgmt Service)

» A DUT supporting the Media2 service shall support the following commands:
» GetProfiles (Media2)
+ GetStreamUri (Media2)

Please refer to Section 5.1 for Uplink Test Cases.

4.3.2 Authentication and Authorization

The test policies specific to the test case execution of Authentication and Authorization functional
block:

+ DUT shall give the ONVIF Uplink Service entry point by GetServices command, if DUT
supports this service. Otherwise, these test cases will be skipped.

» DUT shall give the ONVIF Security Configuration Service entry point by GetServices
command, if DUT supports this service. Otherwise, these test cases will be skipped.

» DUT shall support Uplink over WebSocket connection. Otherwise, these test cases will be
skipped.

o If DUT supports access token authentication, it shall support Authorization Server
Configuration. Otherwise, these test cases will be failed.

www.onvif.org 15

ONVIE® | imsgres

« The DUT shall support certification path validation policy.

» The following tests are performed about Authentication and Authorization

» The DUT will not establish connection if uplink client certificate does not pass certification
path validation policy configured at uplink connection.

» The DUT will not require additional authentication for requests over uplink connection.
 If DUT supports mTLS authentication:

* The DUT will establish connection with mTLS authentication configured.
 If DUT supports access token authentication:

* The DUT will establish connection with access token authentication configured with the
following configurations:

+ OAuthClientCredentials, client_secret_basic (if this combination is supported)
* OAuthClientCredentials, private_key_jwt (if this combination is supported)

» The DUT will re-use access token if it was not expired.

» The DUT will renew access token if it was rejected by the server.

« The DUT will not establish connection if authentication server does not pass certification
path validation policy configured at authentication server configuration.

Please, refer to Section 5.3 for Authentication and Authorization Test Cases.

4.3.3 Capabilities

The test policies specific to the test case execution of Capabilities functional block:

» DUT shall give the Uplink Service entry point by GetServices command, if DUT supports this
service. Otherwise, these test cases will be skipped.

» DUT shall support the following commands:
» GetServices
+ GetServiceCapabilities

* The following tests are performed

» Getting capabilities with GetServiceCapabilities command

16 www.onvif.org

O nVI F | Standardizing IP Connectivity
for Physical Security

+ Getting capabilities with GetServices command

Please refer to Section 5.4 for Uplink Test Cases.

www.onvif.org 17

OnviF | empnggre

5 Uplink Test Cases

5.1 Uplink Connection

5.1.1 UPLINK CONNECT AND DISCONNECT

Test Case ID: UPLINK-1-1-1

Specification Coverage: SetUplink (Uplink Specification), Connection Establishment
(Uplink Specification), Connection Management (Uplink Specification), Authentication (Uplink
Specification)

Feature Under Test: Connect, Disconnect
WSDL Reference: uplink.wsdl
Test Purpose: To verify conect and disconnect operations.

Pre-Requisite: Uplink Service is received from the DUT. Security Configuration Service
is received from the DUT. Create self-signed certificate by the DUT as indicated by the
SelfSignedCertificateCreationWithRSA or PCKS#10 supported by the DUT as indicated by
the PKCS10ExternalCertificationWithRSAcapability or certificate along with an RSA private
key in a PKCS#12 data structure upload is supported by the DUT as indicated by the
PKCS12CertificateWithRSAPrivateKeyUpload capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client removes any existing uplink configurations by following the procedure
mentioned in Annex A.1.

4. ONVIF Client configures certificate on a DUT that will be used for client authentication by
following the procedure mentioned in Annex A.2

+ out certificateDUT - Certificate that uploaded to the DUT with private key.
 out certld - Certificate Id for the certificatethat uploaded to the DUT with private key.

5. ONVIF Client starts service endpoint.

18 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

6. ONVIF Client invokes SetUplink request with parameters

RemoteAddress := IPv4 address and port of service endpoint

CertificatelD := certld

¢ UserlLevel := "Administrator"

Status skipped

L]

CertPathValidationPolicylD skipped
7. The DUT responds with SetUplinkResponse message.

8. ONVIF Client awaits device connecting to service endpoint by following the procedure
mentioned in Annex A.19

* in cetrtificate - Client Certificate for TLS authentification.
9. ONVIF Client invokes GetDevicelnformation request via the service endpoint.

10.ONVIF Client responds with GetDevicelnformationResponse message via the service
endpoint.

11. ONVIF Client removes any existing uplink configurations by following the procedure
mentioned in Annex A.1.

12.ONVIF Client verifies that the device disconnects from the service endpoint.
13.ONVIF Client restores DUT configuration if requered.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send SetUplinkResponse message.
« DUT did not connect to the service endpoint.

+ DUT did not send GetDevicelnformationResponse message.

www.onvif.org 19

OnviF | empnggre

5.2 Uplink Streaming

5.2.1 UPLINK CONNECT AND STREAM — H.264 (RTP-
Unicast/RTSP/WebSockets)

Test Case ID: UPLINK-2-1-1

Specification Coverage: RTSP over WebSockets (Uplink Specification), WebSocket transport for
RTP/RTSP/TCP (ONVIF Streaming Specification).

Feature Under Test: Uplink Streaming over WebSocket
WSDL Reference: uplink.wsdl
Test Purpose: To verify live WebSockets video streaming over the uplink operation.

Pre-Requisite: Uplink Service is received from the DUT. Media2 Service is received from the DUT.
Media2 Service is received from the DUT. H.264 encoding is supported by DUT. Real-time streaming
is supported by DUT. WebSockets is supported by DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client configures a media profile and retrieves a stream uri for video streaming
by following the procedure mentioned in Annex A.20 with the following input and output
parameters

* in H264 - required video encoding

* in RTSP - Transport Protocol

* in IPv4 - IP version

* out streamUri - Uri for media streaming

4. ONVIF Client set up uplink connection between the DUT and uplink service endpoint of the
ONVIF Client by following the procedure mentioned in Annex A.26.

5. Uplink service endpoint of the ONVIF Client tries to start and decode media streaming over
WebSocket by following the procedure mentioned in Annex A.27 with the following input
and output parameters

20 www.onvif.org

ONVIE® | imsgres

* in streamUri - Uri for media streaming
* in video - media type
* in H.264 - expected media stream encoding

6. ONVIF Client restores settings of Video Encoder Configuration and Media Profile changed
at step [TODO] .

Test Result:
PASS -
* DUT passes all assertions.

FAIL —

DUT did not send any of the required response messages.

DUT did not connect to the service endpoint.
» DUT did not process the RTSP setup.

« DUT did not send H.264 Video.

5.3 Authentication and Authorization

5.3.1 Uplink over WebSocket with mTLS Authentication

Test Case ID: UPLINK-3-1-1

Specification Coverage: mTLS authentication (ONVIF Uplink Specification)
Feature Under Test: Uplink WebSocket Connection using mTLS authentication.
WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

Test Purpose: To verify that DUT can establish connection to ONVIF Client via Uplink over
WebSocket using mTLS authentication. To verify that DUT do not require additional authentication
inside established Uplink connection.

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. mTLS authentication is supported by the DUT as indicated by the AuthorizationModes
= mTLS capability. Uplink WebSocket connection is supported by the DUT as indicated by the
Protocols = wss capability.

Test Configuration: ONVIF Client and DUT

www.onvif.org 21

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Procedure:

22

1.

2.

Start an ONVIF Client.
Start the DUT.

ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out cap - Security Configuration Service Capabilities
Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

ONVIF Client configures uplink connection using the following steps:

5.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

» out certPathValidationPolicylDUplink - certification path validation policy identifier
 out certIDUplink - certificate identifier

» out keylDUplink - key pair identifier

» out CACertUplink - CA certificate

+ out privateKeyCACertUplink - CA certificate private key

5.2. ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities

* in "CN=ONVIF TT Uplink 2,C=US" - certificate subject

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in CACertUplink - CA-certificate

* in privateKeyCACertUplink - private key of CA-certificate for certificate signature
+ out certUplink - certificate

* out publicKeyUplink - public key of certificate

» out privateKeyUplink - private key of certificate

5.3. ONVIF Client creates a CA certificate and a corresponding key pair by following the
procedure described in Annex A.7 with the following input and output parameters:

* in cap - DUT capabilities

in keyAlgorithm - key pair algorithm

» out CAcert - CA certificate

out CAkeyPair - key pair with public and private keys

5.4. ONVIF Client creates and uploads a CA-signed certificate for key pair and associated
CA certificate and a corresponding by following the procedure described in Annex A.16
with the following input and output parameters:

* in cap - DUT capabilities

» in CAcert - CA certificate

+ in CAkeyPair.privateKey - CA certificate private key
» out certID1 - CA-signed certificate identificator

* out keylD1 - key pair

» out cert1 - CA-signed certificate

5.5. ONVIF Client creates and uploads a CA-signed certificate for key pair and associated
CA certificate and a corresponding by following the procedure described in Annex A.16
with the following input and output parameters:

* in cap - DUT capabilities
* in CAcert - CA certificate

+ in CAkeyPair.privateKey - CA certificate private key

www.onvif.org 23

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out certID2 - CA-signed certificate identificator

» out keylD2 - key pair
» out cert2 - CA-signed certificate

5.6. ONVIF Client configure endpoint for WebSocket uplink connection at address
wssUplinkAddress1 using certUplink certificate with the following certificates accepted
from the client:

» cert1
» cert2
5.7. ONVIF Client invokes SetUplink request with parameters
* RemoteAddress := wssUplinkAddress1
* CertificatelD := certID1
» UserlLevel := Administrator
+ Status is skipped
+ CertPathValidationPolicylD := certPathValidationPolicylDUplink
 AuthorizationServer is skipped
* Error is skipped
5.8. The DUT responds with SetUplinkResponse message.
6. ONVIF Client verifies initial connection establishment:
6.1. ONVIF Client awaits device connecting to wssUplinkAddress1 endpoint.
6.2. DUT opens connection to wssUplinkAddress1 with cert1 used for client authentication.

6.3. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

6.4. ONVIF Client verify certificate received from the DUT. If received certificate is not cert1,
FAIL the test, restore the DUT state, and skip other steps.

7. ONVIF Client verifies connection establishment after connection parameters were changed:

24 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

7.1. ONVIF Client invokes SetUplink request over uplink connection with parameters

without any additional authentication with parameters

* RemoteAddress := wssUplinkAddress1

* CertificatelD := certID2

» UserlLevel := Administrator

+ Status is skipped

» CertPathValidationPolicyID := certPathValidationPolicylDUplink

+ AuthorizationServer is skipped

* Error is skipped
7.2. The DUT responds with SetUplinkResponse message.
7.3. ONVIF Client close device connection to wssUplinkAddress1 endpoint.
7.4. ONVIF Client awaits device connecting to wssUplinkAddress1 endpoint.
7.5. DUT opens connection to wssUplinkAddress1 with cert2 used for client authentication.

7.6. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

7.7. ONVIF Client verify certificate received from the DUT. If received certificate is not cert2,
FAIL the test, restore the DUT state, and skip other steps.

8. ONVIF Client restores the DUT state.
Test Result:
PASS -
» DUT passed all assertions.
FAIL -
» DUT did not send SetUplinkResponse message.
» DUT does not establish WebSocket Uplink connection at step 6.2.
+ DUT requests additional authentication at steps 7.1 and 7.2.

» DUT does not establish WebSocket Uplink connection at step 7.5.

www.onvif.org 25

OnviF: | sxeeegre

5.3.2 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, client_secret_basic)

Test Case ID: UPLINK-3-1-2

Specification Coverage: Device authentication and authorization (ONVIF Security Service
Specification), Access token authentication (ONVIF Uplink Specification)

Feature Under Test: Uplink Connection using access token authentication using
OAuthClientCredentials and client_secret_basic settings with authentication server certificate
validation.

WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

Test Purpose: To verify that DUT can receive access token from the authentication server using
OAuthClientCredentials authentication method with client_secret_basic type. To verify that DUT can
establish connection to ONVIF Client via Uplink using access token. To verify that DUT will reuse
token if it is not expired. To verify that DUT will renew token when authentication parameters will
be changed. To verify that DUT do not require additional authentication inside established Uplink
connection.

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. Authorization Server Configuration is supported by the DUT as indicated by the
AuthorizationServer.MaxConfigurations capability. OAuthClientCredentials authentication method
is supported by the DUT as indicated by the AuthorizationServer.ConfigurationTypesSupported
capability. client_secret_basic authentication is supported by the DUT as indicated
by the AuthorizationServer.ClientAuthenticationMethodsSupported capability. Access token
authentication is supported by the DUT as indicated by the AuthorizationModes = AccessToken
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

* out cap - Security Configuration Service Capabilities

26 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4. ONVIF Client deletes one authorization server configuration if maximum is reached by

following the procedure described in Annex A.38 with the following input and output
parameters:

* in cap - DUT capabilities
» out itemToRestore1 - deleted authorization server configuration if any
5. Set:

* keyAlgorithm :="ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

6. ONVIF Client configures authentication server connection using the following steps:

6.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT AuthServer 1,C=US" - CA certificate subject

» in "Test CertPathValidationPolicy AuthServer Alias" - certification path validation
policy alias

* out certPathValidationPolicyIDAuthServer - certification path validation policy
identifier

 out certIDAuthServer - certificate identifier

» out keyIDAuthServer - key pair identifier

+ out CACertAuthServer - CA certificate

 out privateKeyCACertAuthServer - CA certificate private key

6.2. ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities

* in "CN=ONVIF TT AuthServer 2,C=US" - certificate subject

www.onvif.org 27

OnviF | gomansg

» in CACertAuthServer - CA-certificate

* in privateKeyCACertAuthServer - private key of CA-certificate for certificate
signature

» out certAuthServer - certificate
 out publicKeyAuthServer - public key of certificate
+ out privateKeyAuthServer - private key of certificate

6.3. ONVIF Client starts Authorization server with metadata endpoint
authServerMetadataEndpoint1 conforming to RFC8414 with following settings:

+ ltis configured to certAuthServer as a server certificate.

+ It is configured to accept OAuth2 client credentials grant flow per [RFC 6749]
authentication method only.

* Itis configured to accept client_secret_basic authentication method only.

» Client with client identifier client/D1 with client secret clientSecret1 and scope
scope is added to be authorized.

» Client with client identifier clientiD1 with client secret clientSecret1 and scope
scope? is added to be authorized.

6.4. ONVIF Client invokes CreateAuthorizationServerConfiguration request with
parameters

* Type := "OAuthClientCredentials"

+ ClientAuth := "client_secret_basic"

» ServerUri := authServerMetadataEndpoint1
* ClientID := clientID1

» ClientSecret := clientSecret1

» Scope := scope1

* KeylD is skipped

+ CertificatelD is skipped

+ CertPathValidationPolicylD := certPathValidationPolicyIDAuthServer

28 www.onvif.org

6.5.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

The DUT responds with CreateAuthorizationServerConfigurationResponse

message with parameters

» Token =: authServerToken1

7. ONVIF Client configures uplink connection using the following steps:

7.1.

7.2.

ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

* out certPathValidationPolicylDUplink - certification path validation policy identifier
+ out certIDUplink - certificate identifier

 out keylDUplink - key pair identifier

» out CACertUplink - CA certificate

 out privateKeyCACertUplink - CA certificate private key

ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities

* in "CN=ONVIF TT Uplink 2,C=US" - certificate subject

* in CACertUplink - CA-certificate

* in privateKeyCACertUplink - private key of CA-certificate for certificate signature
» out certUplink - certificate

+ out publicKeyUplink - public key of certificate

* out privateKeyUplink - private key of certificate

www.onvif.org 29

OnviF | empnggre

7.3. ONVIF Client configure and start service endpoint for uplink connection at address
uplinkAddress1 using certUplink certificate.

7.4. ONVIF Client invokes SetUplink request with parameters

* RemoteAddress := uplinkAddress1

CertificatelD is skipped

Userlevel := Administrator

Status is skipped

CertPathValidationPolicylD := certPathValidationPolicylDUplink

AuthorizationServer := authServerToken1
» Error is skipped
7.5. The DUT responds with SetUplinkResponse message.
8. ONVIF Client verifies initial connection establishment:

8.1. The DUT opens connection to authServerMetadataEndpoint1 with client identifier
clientID1 and client secret clientSecret! using client_secret_basic method
authentication and OAuth2 client credentials grant flow.

8.2. The DUT verifies certificate provided by authentication server based on
certPathValidationPolicylDAuthServer certification path validation policy.

8.3. The DUT receives access token accessToken1 from authorization server for scope
scopel.

8.4. ONVIF Client awaits device connecting to uplinkAddress1 endpoint.
8.5. DUT opens connection to uplinkAddress1 with accessToken1.

8.6. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

8.7. ONVIF Client verify access token received from the DUT with Authentication Server.
If received access token accessToken1 is not valid for scope1, FAIL the test, restore
the DUT state, and skip other steps.

9. ONVIF Client verifies that access token will be reused if it is not expired:

9.1. ONVIF Client close device connection to uplinkAddress1 endpoint.

30 www.onvif.org

9.2.

9.3.

9.4.

9.5.

OnviF | empnggre

ONVIF Client awaits device connecting to uplinkAddress1 endpoint.

DUT opens connection to uplinkAddress1 with accessToken1.

DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

ONVIF Client verify access token received from the DUT with Authentication Server.
If received access token accessToken1 is not the same as was used at step 8.5, FAIL
the test, restore the DUT state, and skip other steps.

10. ONVIF Client verifies connection establishment after connection parameters were changed:

10.1.

10.2.

10.3.

10.4.

10.5.

ONVIF Client invokes SetAuthorizationServerConfiguration request using uplink
connection with parameters without any additional authentication

* @token := authServerToken1

+ Data.Type := "OAuthClientCredentials"

+ Data.ClientAuth := "client_secret_basic™

+ Data.ServerUri := authServerMetadataEndpoint1

» Data.ClientID := clientlD1

» Data.ClientSecret := clientSecret1

» Data.Scope := scope?2

+ Data.KeylD is skipped

+ Data.CertificatelD is skipped

+ Data.CertPathValidationPolicyID := certPathValidationPolicylIDAuthServer
The DUT responds with SetAuthorizationServerConfigurationResponse message.
ONVIF Client close device connection to uplinkAddress1 endpoint.

The DUT opens connection to authServerMetadataEndpoint1 with client identifier
clientiD1 and client secret clientSecret! using client_secret basic method
authentication and OAuth2 client credentials grant flow.

The DUT receives access token accessTokenZ2 from authorization server for scope
scope?2.

www.onvif.org 31

OnviF | empnggre

10.6. ONVIF Client awaits device connecting to uplinkAddress1 endpoint.

10.7. DUT opens connection to uplinkAddress1 with accessToken?2.

10.8. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

10.9. ONVIF Client verify access token received from the DUT with Authentication Server.
If received access token accessTokenZ2 is not valid for scope2, FAIL the test, restore
the DUT state, and skip other steps.

11. ONVIF Client restores the DUT state.
Test Result:
PASS -
» DUT passed all assertions.
FAIL -
» DUT did not send CreateAuthorizationServerConfigurationResponse message.
+ DUT did not send SetUplinkResponse message.
* DUT did not send SetAuthorizationServerConfigurationResponse message.
+ DUT does not establish connection at step 8.5.
* DUT does not establish connection at step 9.3.
» DUT requests additional authentication at steps 10.1 and 10.2.

» DUT does not establish connection at step 10.7.

5.3.3 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, private_key_jwt)

Test Case ID: UPLINK-3-1-3

Specification Coverage: Device authentication and authorization (ONVIF Security Service
Specification), Access token authentication (ONVIF Uplink Specification)

Feature Under Test: Uplink Connection using access token authentication using
OAuthClientCredentials and private_key jwt settings with authentication server certificate
validation.

WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

32 www.onvif.org

OnviF’ | wsmanggres

Test Purpose: To verify that DUT can receive access token from the authentication server using

OAuthClientCredentials authentication method with private_key_jwt type. To verify that DUT can
establish connection to ONVIF Client via Uplink using access token. To verify that DUT do not
require additional authentication inside established Uplink connection.

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. Authorization Server Configuration is supported by the DUT as indicated by the
AuthorizationServer.MaxConfigurations capability. OAuthClientCredentials authentication method
is supported by the DUT as indicated by the AuthorizationServer.ConfigurationTypesSupported
capability. private_key_jwt authentication is supported by the DUT as indicated
by the AuthorizationServer.ClientAuthenticationMethodsSupported capability. Access token
authentication is supported by the DUT as indicated by the AuthorizationModes = AccessToken
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out cap - Security Configuration Service Capabilities

4. ONVIF Client deletes one authorization server configuration if maximum is reached by
following the procedure described in Annex A.38 with the following input and output
parameters:

* in cap - DUT capabilities
» out itemToRestore1 - deleted authorization server configuration if any
5. Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

6. ONVIF Client configures authentication server connection using the following steps:

6.1. ONVIF Client creates a key pair and get public key from device by following the
procedure described in Annex A.40 with the following input and output parameters:

* in cap - DUT capabilities

www.onvif.org 33

34

6.2.

6.3.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in keyAlgorithm - CSR key pair algorithm
+ out keylD1Auth1 - key pair
» out publicKeyAuth1 - public key

ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - CSR key pair algorithm
* in "CN=ONVIF TT AuthServer 1,C=US" - CA certificate subject

» in "Test CertPathValidationPolicy AuthServer Alias" - certification path validation
policy alias

» out certPathValidationPolicyIDAuthServer - certification path validation policy
identifier

 out certIDAuthServer - certificate identifier

» out keyIDAuthServer - key pair identifier

» out CACertAuthServer - CA certificate

+ out privateKeyCACertAuthServer - CA certificate private key

ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities
* in "CN=ONVIF TT AuthServer 2,C=US" - certificate subject
+ in CACertAuthServer - CA-certificate

» in privateKeyCACertAuthServer - private key of CA-certificate for certificate
signature

« out certAuthServer - certificate

+ out publicKeyAuthServer - public key of certificate

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out privateKeyAuthServer - private key of certificate

6.4. ONVIF Client starts Authorization server with metadata endpoint
authServerMetadataEndpoint1 conforming to RFC8414 with following settings:

+ Itis configured to cerfAuthServer as a server certificate.

It is configured to accept OAuth2 client credentials grant flow per [RFC 6749]
authentication method only.

+ ltis configured to accept private_key_jwt authentication method only.

+ Client with client identifier clientID1 with client secret clientSecret1, publicKeyAuth1
as key, and scope scope1 is added to be authorized.

+ Client with client identifier client/D1 with client secret clientSecret1, publicKeyAuth1
as key, and scope scope? is added to be authorized.

6.5. ONVIF Client invokes CreateAuthorizationServerConfiguration request with
parameters

* Type := "OAuthClientCredentials"

+ ClientAuth := "private_key_jwt"

» ServerUri := authServerMetadataEndpoint1

» ClientID := clientID1

+ ClientSecret skipped

» Scope := scopel

* KeylD := publicKeyAuth1

* CertificatelD is skipped

» CertPathValidationPolicylD := certPathValidationPolicylDAuthServer

6.6. The DUT responds with CreateAuthorizationServerConfigurationResponse
message with parameters

» Token =: authServerToken1

7. ONVIF Client configures uplink connection using the following steps:

www.onvif.org 35

O n VI F ® | Standardizing IP Connectivity
for Physical Security

7.1. ONVIF Client creates certification path validation policy by following the procedure

mentioned in Annex A.35 with the following input and output parameters
* in cap - DUT capabilities

* in keyAlgorithm - DUT capabilities

* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

» out certPathValidationPolicylDUplink - certification path validation policy identifier
 out certIDUplink - certificate identifier

» out keyIDUplink - key pair identifier

» out CACertUplink - CA certificate

» out privateKeyCACertUplink - CA certificate private key

7.2. ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities

* in "CN=ONVIF TT Uplink 2,C=US" - certificate subject

 in CACertUplink - CA-certificate

* in privateKeyCACertUplink - private key of CA-certificate for certificate signature
 out certUplink - certificate

» out publicKeyUplink - public key of certificate

* out privateKeyUplink - private key of certificate

7.3. ONVIF Client configure and start service endpoint for uplink connection at address
uplinkAddress1 using certUplink certificate.

7.4. ONVIF Client invokes SetUplink request with parameters

* RemoteAddress := uplinkAddress1

36 www.onvif.org

ONVIE® | imsgres

* CertificatelD is skipped
» UserlLevel := Administrator
+ Status is skipped
» CertPathValidationPolicylD := certPathValidationPolicylDUplink
» AuthorizationServer := authServerToken1
» Error is skipped
7.5. The DUT responds with SetUplinkResponse message.
8. ONVIF Client verifies initial connection establishment:

8.1. The DUT opens connection to authServerMetadataEndpoint1 with client identifier
clientID1 and client secret clientSecret! using client_secret_basic method
authentication and OAuth2 client credentials grant flow.

8.2. The DUT verifies certificate provided by authentication server based on
certPathValidationPolicylDAuthServer certification path validation policy.

8.3. The DUT receives access token accessToken1 from authorization server for scope
scopel.

8.4. ONVIF Client awaits device connecting to uplinkAddress1 endpoint.
8.5. DUT opens connection to uplinkAddress1 with accessToken1.

8.6. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicylDUplink certification path validation policy.

8.7. ONVIF Client verify access token received from the DUT with Authentication Server.
If received access token accessToken1 is not valid for scope1, FAIL the test, restore
the DUT state, and skip other steps.

8.8. ONVIF Client invokes SetAuthorizationServerConfiguration request using uplink
connection with parameters without any additional authentication

* @token := authServerToken1
+ Data.Type := "OAuthClientCredentials"

+ Data.ClientAuth := "client_secret_basic"

www.onvif.org 37

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Data.ServerUri := authServerMetadataEndpoint1

» Data.ClientID := clientlD1
» Data.ClientSecret := clientSecret1
+ Data.Scope := scope?2
+ Data.KeylD is skipped
» Data.CertificatelD is skipped
+ Data.CertPathValidationPolicyID := certPathValidationPolicylIDAuthServer
8.9. The DUT responds with SetAuthorizationServerConfigurationResponse message.
9. ONVIF Client restores the DUT state.
Test Resulit:
PASS -
* DUT passed all assertions.

FAIL —

DUT did not send CreateAuthorizationServerConfigurationResponse message.

DUT did not send SetUplinkResponse message.

* DUT did not send SetAuthorizationServerConfigurationResponse message.

DUT does not establish connection at step 8.5.

5.3.4 Uplink over WebSocket with mTLS Authentication -
Invalid Server Certificate

Test Case ID: UPLINK-3-1-4

Specification Coverage: mTLS authentication (ONVIF Uplink Specification)

Feature Under Test: Uplink Connection using mTLS authentication.

WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

Test Purpose: To verify that DUT will not establish connection with invalid server certificate.

38 www.onvif.org

ONVIE® | imsgres

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. mTLS authentication is supported by the DUT as indicated by the AuthorizationModes

= mTLS capability.

Test Configuration: ONVIF Client and DUT

Test Procedure:

1.

2.

Start an ONVIF Client.
Start the DUT.

ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out cap - Security Configuration Service Capabilities
Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

ONVIF Client configures uplink connection using the following steps:

5.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

+ out certPathValidationPolicylDUplink - certification path validation policy identifier
 out certIDUplink - certificate identifier

» out keylDUplink - key pair identifier

» out CACertUplink - CA certificate

 out privateKeyCACertUplink - CA certificate private key

5.2. ONVIF Client creates a CA certificate and a corresponding key pair by following the
procedure described in Annex A.7 with the following input and output parameters:

www.onvif.org 39

O n VI F ® Standardizing IP Connectivity
for Physical Security

* in cap - DUT capabilities

* in keyAlgorithm - key pair algorithm

» out CAcert - CA certificate

» out CAkeyPair - key pair with public and private keys

5.3. ONVIF Client creates and uploads a CA-signed certificate for key pair and associated
CA certificate and a corresponding by following the procedure described in Annex A.16
with the following input and output parameters:

* in cap - DUT capabilities

» in CAcert - CA certificate

» in CAkeyPair.privateKey - CA certificate private key
» out certID1 - CA-signed certificate identificator

» out keylD1 - key pair

» out cert1 - CA-signed certificate

5.4. ONVIF Client configure endpoint for uplink connection at address uplinkAddress1
using any certificate that will not pass certPathValidationPolicylDUplink with the
following certificates accepted from the client:

+ cert1
5.5. ONVIF Client invokes SetUplink request with parameters
* RemoteAddress := uplinkAddress1
+ CertificatelD := certID1
» UserLevel := Administrator
+ Status is skipped
+ CertPathValidationPolicylD := certPathValidationPolicylDUplink
+ AuthorizationServer is skipped
» Error is skipped

5.6. The DUT responds with SetUplinkResponse message.

40 www.onvif.org

OnviF’ | wsmanggres

6. ONVIF Client verifies connection will not be establishment:

6.1. ONVIF Client awaits device connecting to uplinkAddress1 endpoint.

6.2. DUT tries to open connection to uplinkAddress1 with cert1 used for client
authentication.

6.3. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicyIDUplink certification path validation policy and
prevent connection.

7. ONVIF Client restores the DUT state.
Test Result:
PASS -
* DUT passed all assertions.
FAIL -
» DUT did not send SetUplinkResponse message.
* DUT establishes connection at step 6.3 during operationDelay timeout.

Note: operationDelay will be taken from Operation Delay field of ONVIF Device Test Tool.

5.3.5 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, client_secret _basic) - Invalid Uplink
Client Certificate

Test Case ID: UPLINK-3-1-5

Specification Coverage: Device authentication and authorization (ONVIF Security Service
Specification), Access token authentication (ONVIF Uplink Specification)

Feature Under Test: Uplink Connection using access token authentication when token received
from authentication server using OAuthClientCredentials and client_secret_basic settings with
authentication server certificate validation.

WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

Test Purpose: To verify that DUT will not establish connection with uplink client which has invalid
certificate.

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. Authorization Server Configuration is supported by the DUT as indicated by the

www.onvif.org 41

OnviF | empnggre

AuthorizationServer.MaxConfigurations capability. OAuthClientCredentials authentication method
is supported by the DUT as indicated by the AuthorizationServer.ConfigurationTypesSupported
capability. client_secret_basic authentication is supported by the DUT as indicated
by the AuthorizationServer.ClientAuthenticationMethodsSupported capability. Access token
authentication is supported by the DUT as indicated by the AuthorizationModes = AccessToken
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out cap - Security Configuration Service Capabilities

4. ONVIF Client deletes one authorization server configuration if maximum is reached by
following the procedure described in Annex A.38 with the following input and output
parameters:

* in cap - DUT capabilities
» out itemToRestore1 - deleted authorization server configuration if any
5. Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

6. ONVIF Client configures authentication server connection using the following steps:

6.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT AuthServer 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy AuthServer Alias" - certification path validation
policy alias

42 www.onvif.org

ONVIE® | imsgres

» out certPathValidationPolicyIDAuthServer - certification path validation policy
identifier

+ out certIDAuthServer - certificate identifier

» out keylIDAuthServer - key pair identifier

» out CACertAuthServer - CA certificate

» out privateKeyCACertAuthServer - CA certificate private key

6.2. ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities
* in "CN=ONVIF TT AuthServer 2,C=US" - certificate subject
* in CACertAuthServer - CA-certificate

* in privateKeyCACertAuthServer - private key of CA-certificate for certificate
signature

» out certAuthServer - certificate
+ out publicKeyAuthServer - public key of certificate
+ out privateKeyAuthServer - private key of certificate

6.3. ONVIF Client starts Authorization server with metadata endpoint
authServerMetadataEndpoint1 conforming to RFC8414 with following settings:

+ Itis configured to cerfAuthServer as a server certificate.

It is configured to accept OAuth2 client credentials grant flow per [RFC 6749]
authentication method only.

+ ltis configured to accept client_secret_basic authentication method only.

» Client with client identifier client/D1 with client secret clientSecret1 and scope
scope is added to be authorized.

» Client with client identifier clientiD1 with client secret clientSecret1 and scope
scope? is added to be authorized.

www.onvif.org 43

44

6.4.

6.5.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

ONVIF Client invokes CreateAuthorizationServerConfiguration request with

parameters

* Type := "OAuthClientCredentials"

+ ClientAuth := "client_secret_basic"

» ServerUri := authServerMetadataEndpoint1

» ClientID := clientID1

+ ClientSecret := clientSecret1

+ Scope := scopet

+ KeylD is skipped

* CertificatelD is skipped

» CertPathValidationPolicyID := certPathValidationPolicylIDAuthServer

The DUT responds with CreateAuthorizationServerConfigurationResponse
message with parameters

» Token =: authServerToken1

7. ONVIF Client configures uplink connection using the following steps:

7.1.

ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

+ out certPathValidationPolicylDUplink - certification path validation policy identifier
 out certIDUplink - certificate identifier
» out keylDUplink - key pair identifier

» out CACertUplink - CA certificate

www.onvif.org

ONVIE® | imsgres

» out privateKeyCACertUplink - CA certificate private key

7.2. ONVIF Client configure and start service endpoint for uplink connection
at address uplinkAddress1 using any certificate that will not pass
certPathValidationPolicylDUplink certification path validation policy.

7.3. ONVIF Client invokes SetUplink request with parameters
* RemoteAddress := uplinkAddress1
* CertificatelD is skipped
* UserLevel := Administrator
+ Status is skipped
+ CertPathValidationPolicylD := certPathValidationPolicylDUplink
 AuthorizationServer := authServerToken1
* Error is skipped

7.4. The DUT responds with SetUplinkResponse message.

8. ONVIF Client verifies initial connection establishment:

8.1. The DUT opens connection to authServerMetadataEndpoint1 with client identifier
clientiD1 and client secret clientSecret! using client_secret basic method
authentication and OAuth2 client credentials grant flow.

8.2. The DUT verifies certificate provided by authentication server based on
certPathValidationPolicylDAuthServer certification path validation policy.

8.3. The DUT receives access token accessToken1 from authorization server for scope
scopeT.

8.4. ONVIF Client awaits device connecting to uplinkAddress1 endpoint.
8.5. DUT opens connection to uplinkAddress1 with accessToken1.

8.6. DUT verifies certificate provided by ONVIF Client at uplink connection establishment
based on certPathValidationPolicyIDUplink certification path validation policy and
prevent connection.

9. ONVIF Client restores the DUT state.

Test Result:

www.onvif.org 45

OnviF’ | wsmanggres

PASS -
+ DUT passed all assertions.
FAIL -
+ DUT did not send CreateAuthorizationServerConfigurationResponse message.
+ DUT did not send SetUplinkResponse message.
* DUT establishes connection at step 8.6 during operationDelay timeout.

Note: operationDelay will be taken from Operation Delay field of ONVIF Device Test Tool.

5.3.6 Uplink over WebSocket with access token authentication
(OAuthClientCredentials, client_secret_basic) - Invalid
Authentication Server Certificate

Test Case ID: UPLINK-3-1-6

Specification Coverage: Device authentication and authorization (ONVIF Security Service
Specification), Access token authentication (ONVIF Uplink Specification)

Feature Under Test: Uplink Connection using access token authentication when token received
from authentication server using OAuthClientCredentials and client_secret_basic settings with
authentication server certificate validation.

WSDL Reference: uplink.wsdl, advancedsecurity.wsdl

Test Purpose: To verify that DUT will not establish connection with invalid authentication server
certificate.

Pre-Requisite: Security Configuration Service is received from the DUT. Uplink Service is received
from the DUT. Authorization Server Configuration is supported by the DUT as indicated by the
AuthorizationServer.MaxConfigurations capability. OAuthClientCredentials authentication method
is supported by the DUT as indicated by the AuthorizationServer.ConfigurationTypesSupported
capability. client_secret_basic authentication is supported by the DUT as indicated
by the AuthorizationServer.ClientAuthenticationMethodsSupported capability. Access token
authentication is supported by the DUT as indicated by the AuthorizationModes = AccessToken
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

46 www.onvif.org

ONVIE® | imsgres

2. Start the DUT.

3. ONVIF Client gets the security configuration service capabilities by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out cap - Security Configuration Service Capabilities

4. ONVIF Client deletes one authorization server configuration if maximum is reached by
following the procedure described in Annex A.38 with the following input and output
parameters:

* in cap - DUT capabilities
» out itemToRestore1 - deleted authorization server configuration if any
5. Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

6. ONVIF Client configures authentication server connection using the following steps:

6.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT AuthServer 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy AuthServer Alias" - certification path validation
policy alias

« out certPathValidationPolicyIDAuthServer - certification path validation policy
identifier

 out certIDAuthServer - certificate identifier

» out keyIDAuthServer - key pair identifier

» out CACertAuthServer - CA certificate

+ out privateKeyCACertAuthServer - CA certificate private key

6.2. ONVIF Client starts Authorization server with metadata endpoint
authServerMetadataEndpoint1 conforming to RFC8414 with following settings:

www.onvif.org 47

OnviF | gomansg

o It is configured to any certificate that will not pass

certPathValidationPolicylDAuthServer validation as a server certificate.

It is configured to accept OAuth2 client credentials grant flow per [RFC 6749]
authentication method only.

+ ltis configured to accept client_secret_basic authentication method only.

» Client with client identifier clientiD1 with client secret clientSecret1 and scope
scope is added to be authorized.

» Client with client identifier client/D1 with client secret clientSecret1 and scope
scope? is added to be authorized.

6.3. ONVIF Client invokes CreateAuthorizationServerConfiguration request with
parameters

* Type := "OAuthClientCredentials"

* ClientAuth := "client_secret_basic"

» ServerUri := authServerMetadataEndpoint1

» ClientID := clientID1

+ ClientSecret := clientSecret1

» Scope := scopet

+ KeylD is skipped

* CertificatelD is skipped

+ CertPathValidationPolicyID := certPathValidationPolicylIDAuthServer

6.4. The DUT responds with CreateAuthorizationServerConfigurationResponse
message with parameters

» Token =: authServerToken1
7. ONVIF Client configures uplink connection using the following steps:

7.1. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.35 with the following input and output parameters

* in cap - DUT capabilities

48 www.onvif.org

7.2.

7.3.

7.4.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in keyAlgorithm - DUT capabilities
* in "CN=ONVIF TT Uplink 1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy Uplink Alias" - certification path validation policy
alias

* out certPathValidationPolicylDUplink - certification path validation policy identifier
+ out certIDUplink - certificate identifier

» out keylDUplink - key pair identifier

» out CACertUplink - CA certificate

» out privateKeyCACertUplink - CA certificate private key

ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.37 with the following input
and output parameters:

* in cap - DUT capabilities

* in "CN=ONVIF TT Uplink 2,C=US" - certificate subject

* in CACertUplink - CA-certificate

* in privateKeyCACertUplink - private key of CA-certificate for certificate signature
 out certUplink - certificate

» out publicKeyUplink - public key of certificate

* out privateKeyUplink - private key of certificate

ONVIF Client configure and start service endpoint for uplink connection at address
uplinkAddress1 using certUplink certificate.

ONVIF Client invokes SetUplink request with parameters
* RemoteAddress := uplinkAddress1
* CertificatelD is skipped

« UserLevel := Administrator

www.onvif.org 49

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Status is skipped

CertPathValidationPolicyID := certPathValidationPolicylDUplink

AuthorizationServer := authServerToken1
* Error is skipped
7.5. The DUT responds with SetUplinkResponse message.
8. ONVIF Client verifies initial connection establishment:

8.1. The DUT opens connection to authServerMetadataEndpoint1 with client identifier
clientID1 and client secret clientSecret! using client_secret_basic method
authentication and OAuth2 client credentials grant flow.

8.2. The DUT verifies certificate provided by authentication server based on
certPathValidationPolicylDAuthServer certification path validation policy and prevent
connection.

9. ONVIF Client restores the DUT state.
Test Result:
PASS -
* DUT passed all assertions.
FAIL -
+ DUT did not send CreateAuthorizationServerConfigurationResponse message.
* DUT did not send SetUplinkResponse message.
+ DUT establishes connection at step 8.2 during operationDelay timeout.

Note: operationDelay will be taken from Operation Delay field of ONVIF Device Test Tool.

5.4 Capabilities

5.4.1 GET SERVICES AND GET UPLINK SERVICE
CAPABILITIES CONSISTENCY

Test Case ID: UPLINK-4-1-1

50 www.onvif.org

OnviF | empnggre

Specification Coverage: Capability exchange (ONVIF Core Specification), Capabilities (Uplink
Service Specification)

Feature Under Test: GetServices, GetServiceCapabilities (Uplink)
WSDL Reference: devicemgmt.wsdl, uplink.wsdl

Test Purpose: To verify getting Uplink Service using GetServices request. To verify Get Services
and Uplink Service Capabilities consistency.

Pre-Requisite: Uplink Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetServices message with parameters:
* IncludeCapability := false
4. The DUT responds with a GetServicesResponse message with parameters:
» Service list =: listOfServicesWithoutCapabilities

5. If listOfServicesWithoutCapabilites does not contain item with Namespace = "http://
www.onvif.org/ver10/uplink/wsdl", FAIL the test and skip other steps.

6. Set uplinkServ := item from listOfServicesWithoutCapabilities list with Namespace = "http://
www.onvif.org/ver10/uplink/wsdl".

7. If uplinkServ.Capabilities is specified, FAIL the test and skip other steps.

8. ONVIF Client invokes GetServices message with parameters:
* IncludeCapability := true

9. The DUT responds with a GetServicesResponse message with parameters:
» Service list =: listOfServicesWithCapabilities

10.If listOfServicesWithCapabilites does not contain item with Namespace = "http://
www.onvif.org/ver10/uplink/wsdl", FAIL the test and skip other steps.

11. Set uplinkServ := item from listOfServicesWithCapabilities list with Namespace = "http://
www.onvif.org/ver10/uplink/wsdl".

www.onvif.org 51

O n V I F ® Standardizing IP Connectivity
for Physical Security

12.If uplinkServ.Capabilities is not specified, FAIL the test and skip other steps.

13.If uplinkServ.Capabilities does not contain valid Capabilities element for Uplink service from
"http://www.onvif.org/ver10/uplink/wsdl" namespace, FAIL the test and skip other steps.

14. ONVIF Client invokes GetServiceCapabilities (Uplink) message.
15.The DUT responds with GetServiceCapabilitiesResponse message with parameters
* Capabilities =: cap

16.If cap differs from uplinkServ.Capabilities.Capabilities, FAIL the test.
Test Resulit:
PASS -

» DUT passed all assertions.
FAIL -

* The DUT did not send GetServicesResponse message.

+ The DUT did not send GetServiceCapabilitiesResponse message.
Note: The following fields are compared at step 16:

» MaxUplinks

52 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Annex A Helper Procedures and Additional Notes

A.1 Clean Up Uplink Configurations

Name: HelperCleanUpUplinkConfigurations
Procedure Purpose: Helper procedure to remove all uplink configurations from the DUT.
Pre-requisite: Uplink Service is received from the DUT.
Input: None
Returns: None.
Procedure:
1. ONVIF Client invokes GetUplinks request.
2. The DUT responds with GetUplinksResponse message with parameters
* Uplink Configurations list =: uplinkConfigList
3. Foreach uplink configuration (uplinkConfig) from uplinkConfigList repeat the following steps:
3.1. ONVIF Client invokes DeleteUplink request with parameters
* RemoteAddress := uplinkConfig.RemoteAddress
3.2. The DUT responds with DeleteUplinkResponse message.
Procedure Result:
PASS -
* DUT passed all assertions.
FAIL -
» DUT did not send GetUplinksResponse message.

+ DUT did not send DeleteUplinkResponse message.

A.2 Configure Client Certificate

Name: HelperConfigureClientCertificate

Procedure Purpose: Helper procedure to choose or create a certificate with private key.

www.onvif.org 53

OnviF’ | wsmanggres

Pre-requisite: Security Configuration Service is received from the DUT. Create self-signed
certificate by the DUT as indicated by the SelfSignedCertificateCreationWithRSA or PCKS#10
supported by the DUT as indicated by the PKCS10ExternalCertificationWithRSAcapability or
certificate along with an RSA private key in a PKCS#12 data structure upload is supported by the
DUT as indicated by the PKCS12CertificateWithRSAPrivateKeyUpload capability.

Input: None

Returns: Certificate that has private key and uploaded to the DUT (certDUT, certid).

Procedure:

1.

54

ONVIF Client tries to find existing certificate with private key by following the procedure
mentioned in Annex A.3 with the following input and output parameters

 out (optional) certDUT - Certificate that has private key.

» out (optional) certld - Certificate Id that has private key.

If certificate was returned on step 1, skip other steps and return to test procedure.
ONVIF Client invokes GetServiceCapabilities for Security Configuration Service.

The DUT responds with GetServiceCapabilitiesResponse message with parameters
» Capabilities =: cap

If certificate along with an RSA private key in a PKCS#12 data structure upload is supported
by the DUT as indicated by the PKCS12CertificateWithRSAPrivateKeyUpload capability:

5.1. ONVIF Client creates a CA certificate (out certDUT) and a corresponding public
key (out publicKey) in the certificate along with the corresponding private key (out
privateKey) in the form of a PKCS#12 file (out PKCS12data) and uploads it with
certification path ID (out certificationPathID) and key pair ID (out keyID) by following
the procedure described in Annex A.4.

5.2. ONVIF Client invokes GetCertificationPath with parameters
+ CertificationPathID =: certificationPathID

5.3. The DUT responds with a GetCertificationPathResponse message with parameters
+ CertificationPath.CertificatelD[0] =: certld
* CertificationPath.Alias

5.4. Skip other steps and return to test procedure.

www.onvif.org

OnviF | empnggre

6. If self-signed certificate is supported by the DUT as indicated by the
SelfSignedCertificateCreationWithRSA capability:

6.1. ONVIF Client creates a self-signed certificate (out certld) and related RSA key pair
(out keylD) by following the procedure mentioned in Annex A.12.

6.2. ONVIF Client invokes GetCertificate message with parameters
* CertificatelD := certID

6.3. The DUT responds with a GetCertificateResponse message with parameters
* Certificate =: certDUT

6.4. Skip other steps and return to test procedure.

7. If PKCS#10 supported by the DUT as indicated by the
PKCS10ExternalCertificationWithRSA capability:

7.1. ONVIF Client creates a CA certificate (out certCA) and a corresponding private key
(out privateKey) by following the procedure described in Annex A.7.

7.2. ONVIF Client creates and uploads a CA-signed certificate (out certld, out certDUT)
for RSA key pair (out keylD1) based on associated CA certificate (in cerfCA) and
a corresponding private key (in privateKey) by following the procedure described in
Annex A.16.

7.3. Skip other steps and return to test procedure.

8. FAIL the test and restore DUT configuration if needed.
Procedure Result:
PASS -

* DUT passed all assertions.
FAIL -

+ DUT did not send GetServiceCapabilitiesResponse message.

« DUT did not send GetCertificationPathResponse message.

» DUT did not send GetCertificateResponse message.

A.3 Choose Client Certificate With Private Key

Name: HelperChooseClientCertificateWithPrivateKey

www.onvif.org 55

ONVIE® | imsgres

Procedure Purpose: Helper procedure to choose one certificate that has private key.

Pre-requisite: Security Configuration Service is received from the DUT. RSA key pair generation
is supported by the DUT as indicated by the RSAKeyPairGeneration capability.

Input: None
Returns: (opional) Certificate (certDUT) that has private key.
Procedure:
1. ONVIF Client invokes GetAllCertificates.
2. The DUT responds with a GetAllCertificatesResponse message with parameters
+ Certificate list =: certificateList
3. ONVIF Client invokes GetAllKeys.
4. The DUT responds with a GetAllKeysResponse message with parameters
» KeyAttribute list =: keyAlttributeList
5. For each certificate from certificateList:

5.1. If keyAttributeList[KeyID = certificate.KeylD].hasPrivateKey = true, return certificate to
test procedure and skip other steps.

Procedure Resulit:
PASS -
* DUT passed all assertions.
FAIL -
» DUT did not send GetAllCertificates message.

* DUT did not send GetAllKeysResponse message.

A.4 Upload PKCS#12 — no key pair exists

Name: HelperUploadPKCS12

Procedure Purpose: Helper procedure to create and upload PKCS#12 data structure with new
public key and private key.

Pre-requisite: Security Configuration Service is received from the DUT. Certificate along with an
ECC or RSA private key in a PKCS#12 data structure upload is supported by the DUT as indicated

56 www.onvif.org

OnviF | empnggre

by the PKCS12 or PKCS12CertificateWithRSAPrivateKeyUpload capability. The DUT shall have
enough free storage capacity for one additional key pair. The DUT shall have enough free storage
capacity for one additional certificate. The DUT shall have enough free storage capacity for one
additional certification path.

Input: The subject (subject) of CA certificate (optional input parameter, could be skipped). The
service capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: A [PKCS#12] compliant PKCS#12 data structure (PKCS12data) with CA certificate
(CAcert) and a corresponding key pair (keyPair) with a corresponding public key in the certificate
along with the corresponding private key and certification path ID (certificationPathID) with
corresponding key pair ID (keyID) for uploaded PKCS#12 data structure.

Procedure:
1. ONVIF Client generates an encryption passphrase passphrase1 (see Annex A.5).

2. ONVIF Client creates an CA certificate in a form of PKCS#12 file with with given passphrase
by following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* in subject - CA certificate subject
* in passphrase1 - passphrase
+ out PKCS12data - PKCS#12 file
« out CAcert - CA certificate
» out keyPair - key pair for the CA certificate
3. ONVIF Client invokes UploadCertificateWithPrivateKeyInPKCS12 with parameters
+ CertWithPrivateKey := PKCS12data

» CertificationPathAlias := "ONVIF_Certification_Path_Test"

KeyAlias := "ONVIF_Key_Test"

IgnoreAdditionalCertificates skipped

IntegrityPassphraselD skipped

L]

EncryptionPassphraselD skipped

www.onvif.org 57

ONVIE® | imsgres

» Passphrase := passphrase1

4. The DUT responds with a UploadCertificateWithPrivateKeylnPKCS12Response
message with parameters

+ CertificationPathID =: certificationPathID
* KeylD =: keylD
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send UploadCertificateWithPrivateKeyInPKCS12Response message.

A.5 Passphrases for test cases

Use the following passphrases for test cases (20 ASCII characters):
» passphrase1 := "Passphrase for ONVIF"

» passphrase?2 := "AdditionalPassphrase"

A.6 Creating a PKCS#12 data structure with new CA-signed
certificate signed by new public key and private key with
passphrase

Name: HelperCreatePKCS12WithNewCACertWithPassphrase

Procedure Purpose: Helper procedure to create CA certificate and a corresponding public key in
the certificate along with the corresponding private key and encryption passphrase in the form of
a PKCS#12 file.

Pre-requisite: None.

Input: The passphrase (passphrase) to use in encryption. The subject (subject) of CA certificate
(optional input parameter, could be skipped). The service capabilities (cap). The key pair algorithm
(keyAlgorithm).

58 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Returns: A [PKCS#12] compliant PKCS#12 data structure (PKCS12data) with CA certificate
(CAcert) and a corresponding key pair (keyPair) with a corresponding public key in the certificate
along with the corresponding private key encrypted with passphrase (passphrase).

Procedure:

1. ONVIF Client creates an CA certificate by following the procedure mentioned in Annex A.7
with the following input and output parameters

* in cap - DUT capabilities

* in keyAlgorithm - key pair algorithm

* in subject - CA certificate subject

* out keyPair - key pair for the CA certificate

2. ONVIF Client creates a PKCS#12 file by following the procedure mentioned in Annex A.11
with the following input and output parameters

* in CAcert - CA certificate
* in keyPair - key pair
* in passphrase - passphrase

» out PKCS12data - PKCS#12 file

A.7 Provide CA certificate

Name: HelperCreateCACertificate
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
* ONVIF Base Device Test Specification
Procedure Purpose: Helper procedure to create an X.509 CA certificate.
Pre-requisite: None.

Input: The subject (subject) of certificate (optional input parameter, could be skipped). The service
capabilities (cap). The key pair algorithm (keyAlgorithm).

www.onvif.org 59

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Returns: An X.509 CA certificate (CAcert) that is compliant to [RFC 5280] and a corresponding
key pair (keyPair) with private key and public key.

Procedure:

1. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
 out signatureAlgorithm - signature algorithm

2. ONVIF Client generates a key pair by following the procedure mentioned in Annex A.9 with
the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* out keyPair - key pair
3. If subject is skipped set:
* subject :="CN=ONVIF TT,C=US"

4. ONVIF Client creates an X.509 self-signed CA certificate that is compliant to [RFC 5280]
and has the following properties:

e version :=v3

 signature := signatureAlgorithm

validity := not before 19700101000000Z and not after 99991231235959Z
* subject := subject
* public key := keyPair .publickey
 private key to be used := keyPair.privateKey
Note: ONVIF Client may return the same CA certificate in subsequent invocations of this procedure

for the same subject.

A.8 Signature Algorithm Selection

Name: HelperSignatureAlgorithmSelection

60 www.onvif.org

OnviF | empnggre

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to select signature algorithm wich will be used for tests
based on Device capabilities.

Pre-requisite: Security Configuration Service is received from the DUT.
Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).
Returns: The signature algorithm (signatureAlgorithm).

Procedure:

1. If keyAlgorithm = RSA: ONVIF Client selects signature algorithm (signatureAlgorithm)
that will be wused for the test from the Ilist provided by DUT at
cap.KeystoreCapabilities.SignatureAlgorithms. Selection is done among the following list of
signature algorithms supported by the Client by priority from first to last:

» 1.2.840.113549.1.1.13 (OID of SHA-512 with RSA Encryption algorithm)

1.2.840.113549.1.1.12 (OID of SHA-384 with RSA Encryption algorithm)

1.2.840.113549.1.1.11 (OID of SHA-256 with RSA Encryption algorithm)

1.2.840.113549.1.1.14 (OID of SHA-224 with RSA Encryption algorithm)

1.2.840.113549.1.1.5 (OID of SHA-1 with RSA Encryption algorithm)

2. If keyAlgorithm = ECC: ONVIF Client selects signature algorithm (signatureAlgorithm)
that will be wused for the test from the Ilist provided by DUT at
cap.KeystoreCapabilities.SignatureAlgorithms. Selection is done among the following list of
signature algorithms supported by the Client by priority from first to last:

1.2.840.10045.4.3.4 (OID of SHA-512 with ECC Encryption algorithm)

1.2.840.10045.4.3.3 (OID of SHA-384 with ECC Encryption algorithm)

1.2.840.10045.4.3.2 (OID of SHA-256 with ECC Encryption algorithm)

1.2.840.10045.4.3.1 (OID of SHA-224 with ECC Encryption algorithm)

1.2.840.10045.4.1 (OID of SHA-1 with ECC Encryption algorithm)

www.onvif.org 61

O n VI F ® Standardizing IP Connectivity
for Physical Security

3. If the previous steps is done with empty signature algorithm (signatureAlgorithm): FAIL the
procedure.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

+ DUT did not return any of signature algorithms listed at step 1 or 2.

A.9 Generate a key pair

Name: HelperGenerateKeyPair
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification
Procedure Purpose: Helper procedure to generate a key pair.
Pre-requisite: None.
Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: A [RFC 3447] compliant RSA or [RFC 5480, RFC 5915] compliant ECC key pair (keyPair)
with new public key and private key.

Procedure:

1. ONVIF Client determines the key pair generation params by following the procedure
mentioned in Annex A.10 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
» out keyGenParams - key pair generation params

2. If keyGenParams.algorithm = RSA:

62 www.onvif.org

ONVIE® | imsgres

a. Create an [RFC 3447] compliant RSA key pair (out keyPair) with new public key and
private key with the following properties:

+ KeylLength := keyGenParams.keylLength
3. If keyGenParams.algorithm = ECC:

a. Create an [RFC 5480, RFC 5915] compliant ECC key pair (out keyPair) with new public
key and private key with the following properties:

+ EllipticCurve := keyGenParams.ellipticCurve

A.10 Determine key pair generation params

Name: HelperDetermineKeyPairGenerationParams

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
+ ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to determine the key pair generation params to use during
testing.

Pre-requisite: Security Configuration Service is received from the DUT. On-board ECC or RSA
key pair generation is supported by the DUT as indicated by the ECCKeyPairGeneration or
RSAKeyPairGeneration capability.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).
Returns: The key pair generation params (keyGenParams).
Procedure:

1. If keyAlgorithm = RSA:

a. ONVIF Client loops through the supported Key length list
(cap.KeystoreCapabilities .RSAKeyLengths) and selects the smallest supported key
length (keyLength).

b. ONVIF Client creates the RSA key generation params (keyGenParams) with the key
length (keyLength).

www.onvif.org 63

ONVIE® | imsgres

2. If keyAlgorithm = ECC:

a. ONVIF Client loops through the supported elliptic curves list
(cap.KeystoreCapabilities.EllipticCurves) and selects the simplest elliptic curve
(ellipticCurve).

b. ONVIF Client creates the ECC key generation params (keyGenParams) with the elliptic
curve (ellipticCurve).

3. If previous steps is done with empty key pair generation params (keyGenParams). FAIL the
procedure.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

* No supported RSA key length was found at step 1.1 or no supported ECC elliptic curves was
found at step 2.1.

A.11 Creating a PKCS#12 data structure with existing CA-
signed certificate and a corresponding public key and private
key with passphrase

Name: HelperCreatePKCS12WithPassphrase

Procedure Purpose: Helper procedure to create a PKCS#12 data structure with existing CA-signed
certificate and a corresponding public key and private key with passphrase.

Pre-requisite: None.

Input: An X.509 CA certificate (CAcert) that is compliant to [RFC 5280] and a corresponding key
pair (keyPair) with private key and public key, and passphrase (passphrase).

Returns: A [PKCS#12] compliant PKCS#12 data structure (PKCS12data).
Procedure:
1. Use the current PrivateKeylnfo data:

* PrivateKeylnfo

64 www.onvif.org

O n V I F ® Standardizing IP Connectivity
for Physical Security

* version :=v2

privateKeyAlgorithm := keyPair.algorithm
+ privateKey := keyPair .privateKey
* publicKey := keyPair .publicKey
2. Create an EncryptedPrivateKeyInf data structure with the following properties:
* EncryptedPrivateKeylnfo
+ encryptionAlgorithm := pbeWithSHAANd3-KeyTripleDES-CBC
» encryptedData := encrypted with passphrase PrivateKeylnfo data

3. Create an [PKCS#12] compliant PKCS#12 data structure (PKCS12data) with the following
properties:

* version :=v3
+ authSafe
+ SafeBag
* Pkcs-12-PKCS9ShroudedKeyBag := EncryptedPrivateKeylnfo
+ PKCS12AttrSet
+ friendlyName := "testAlias"
« SafeBag
* Pkcs-12-CertBag := CAcert
+ PKCS12AttrSet

+ friendlyName := "testAlias"

A.12 Create a self-signed certificate

Name: HelperCreateSelfSignedCertificate
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification

* ONVIF Security Configuration Device Test Specification

www.onvif.org 65

ONVIE® | imsgres

» ONVIF Base Device Test Specification
Procedure Purpose: Helper procedure to create a self-signed certificate.

Pre-requisite: Security Configuration Service is received from the DUT. Create self-signed
certificate supported by the DUT as indicated by the SelfSignedCertificateCreation or
SelfSignedCertificateCreationWithRSA capability. On-board ECC or RSA key pair generation is
supported by the DUT as indicated by the ECCKeyPairGeneration or RSAKeyPairGeneration
capability.

The DUT shall have enough free storage capacity for one additional key pair. The DUT shall have
enough free storage capacity for one additional certificate.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).
Returns: The identifier of the new certificate (certID) and key pair (keyID).
Procedure:

1. ONVIF Client creates a key pair by following the procedure mentioned in Annex A.13 with
the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* out keylID - key pair ID

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - Key Pair Algorithm
 out signatureAlgorithm - signature algorithm
3. ONVIF Client invokes CreateSelfSignedCertificate with parameters
» X509Version skipped
» KeylD := keylD

* Subject ;= subject (see Annex A.15)

Alias skipped

notValidBefore skipped

66 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

notValidAfter skipped

SignatureAlgorithm := signatureAlgorithm

SignatureAlgorithm.parameters skipped

SignatureAlgorithm.anyParameters skipped
» Extension skipped
4. The DUT responds with CreateSelfSignedCertificateResponse message with parameters
 CertificatelD =: certID
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send CreateSelfSignedCertificateResponse message.

A.13 Create a key pair

Name: HelperCreateKeyPair

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
» ONVIF Security Configuration Device Test Specification
* ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to create ECC or RSA key pair

Pre-requisite: Security Configuration Service is received from the DUT. On-board ECC or RSA
key pair generation is supported by the DUT as indicated by the ECCKeyPairGeneration or
RSAKeyPairGeneration capability. The DUT shall have enough free storage capacity for one
additional key pair.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: The identifier of the new key pair (keyID).

www.onvif.org 67

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure:

1. ONVIF Client determines the key pair generation params by following the procedure
mentioned in Annex A.10 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
» out keyGenParams - key pair generation params
2. If keyGenParams.algorithm = RSA:
a. ONVIF Client invokes CreateRSAKeyPair with parameter
» KeylLength := keyGenParams.keyLength
b. The DUT responds with CreateRSAKeyPairResponse message with parameters
* KeylD =: keylD
» EstimatedCreationTime =: duration
3. If keyGenParams.algorithm = ECC:
a. ONVIF Client invokes CreateECCKeyPair with parameter
+ EllipticCurve := keyGenParams.ellipticCurve
b. The DUT responds with CreateECCKeyPairResponse message with parameters
* KeyID =: keylD
» EstimatedCreationTime =: duration
4. Until operationDelay + duration expires repeat the following steps:
4.1. ONVIF Client waits for 5 seconds.
4.2. ONVIF Client invokes GetKeyStatus with parameters
* KeyID := keyID
4.3. The DUT responds with GetKeyStatusResponse message with parameters
+ KeyStatus =: keyStatus

4.4. |If keyStatus is equal to "ok", keyID will be return as a result of the procedure, other
steps will be skipped.

68 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4.5. If keyStatus is equal to "corrupt", FAIL the procedure and deletes the key pair (keyID)
by following the procedure mentioned in Annex A.14.

5. If operationDelay + duration expires for step 4 and the last keyStatus is other than "ok",
FAIL the procedure and deletes the key pair (keyID) by following the procedure mentioned
in Annex A.14.

Procedure Result:
PASS -

» DUT passes all assertions.
FAIL -

« DUT did not send CreateRSAKeyPairResponse or CreateECCKeyPairResponse
message.

+ DUT did not send GetKeyStatusResponse message(s).

Note: operationDelay will be taken from Operation Delay field of ONVIF Device Test Tool.

A.14 Delete a key pair

Name: HelperDeleteKeyPair

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to delete a key pair.

Pre-requisite: Security Configuration Service is received from the DUT. On-board RSA or ECC
key pair generation is supported by the DUT as indicated by the RSAKeyPairGeneration or
ECCKeyPairGeneration capability.

Input: The identifier of the key pair (keyID) to delete.
Returns: None
Procedure:

1. ONVIF Client invokes DeleteKey with parameters

* KeylD := keylD

www.onvif.org 69

OnviF | empnggre

2. DUT responds with a DeleteKeyResponse message.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

« DUT did not send DeleteKeyResponse message.

A.15 Subject for a server certificate

Name: HelperSubjectForServerCertificate
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
» ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification
Use the following subject for test cases:
» Subject.Country := "US"

» Subject.CommonName := <DUT IP-address>

A.16 Create and upload a CA-signed certificate for private key

Name: HelperUploadCASignedCertificate
Procedure Purpose: Helper procedure to create and upload a CA-signed certificate for private key

Pre-requisite: Security Configuration Service is received from the DUT. Create PCKS#10
supported by the DUT as indicated by the PKCS10 or PKCS10ExternalCertificationWithRSA
capability. On-board ECC or RSA key pair generation is supported by the DUT as indicated by
the ECCKeyPairGeneration or RSAKeyPairGeneration capability. The DUT shall have enough free
storage capacity for one additional key pair. The DUT shall have enough free storage capacity for
one additional certificate. Current time of the DUT shall be at least Jan 01, 1970.

Input: CA certificate (CAcert) and a corresponding private key (caPrivateKey). The service
capabilities (cap). The key pair algorithm of the key which will be in the result certificate
(certKeyAlgorithm).

70 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

Returns: The identifier of the new key pair (keylID), a certificate identifier (cert/D), a certificate (cert).

Procedure:

1. ONVIF Client creates a certificate from the PKCS#10 request with key pair and associated
CA certificate and a corresponding private key by following the procedure described in Annex
A.17 with the following input and output parameters:

* in cap - DUT capabilities
+ in CAcert - CA certificate
* in caPrivateKey - private key
* in certKeyAlgorithm - key pair algorithm
» out cert - certificate
* out keylD1 - key pair ID
2. ONVIF Client invokes UploadCertificate with parameters
+ Certificate := cert
+ Alias := "ONVIF_Test1"
» PrivateKeyRequired := true
3. The DUT responds with UploadCertificateResponse with parameters
 CertificatelD =: certID
* KeylD =: keylD
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -

* DUT did not send UploadCertificateResponse message.

A.17 Create a CA-signed certificate for the key pair

Name: HelperCreateCASignedCertificate

Procedure Purpose: Helper procedure to create a CA-signed certificate for key pair.

www.onvif.org 71

OnviF | empnggre

Pre-requisite: Security Configuration Service is received from the DUT. Create PCKS#10
supported by the DUT as indicated by the PKCS10 or PKCS10ExternalCertificationWithRSA
capability. On-board ECC or RSA key pair generation is supported by the DUT as indicated by
the ECCKeyPairGeneration or RSAKeyPairGeneration capability. The DUT shall have enough free
storage capacity for one additional key pair. Current time of the DUT shall be at least Jan 01, 1970.

Input: CA certificate (CAcert) and a corresponding private key (caPrivateKey). The service
capabilities (cap). The CSR key pair algorithm (csrKeyAlgorithm).

Returns: The identifier of the new key pair (keylD), a CA-signed certificate (cert).
Procedure:

1. ONVIF Client creates a key pair by following the procedure mentioned in Annex A.13 with
the following input and output parameters:

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
* out csrKeyID - key pair ID

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
» out caSignatureAlgorithm - signature algorithm
3. ONVIF Client invokes CreatePKCS10CSR with parameters
* Subject := subject (see Annex A.15)
* KeylD := csrKeylD
» CSRAttribute skipped
» SignatureAlgorithm.algorithm := signatureAlgorithm
4. The DUT responds with CreatePKCS10CSRResponse message with parameters
*» PKCS10CSR =: PKCS10request

5. ONVIF Client creates a certificate from the PKCS#10 request and an associated CA
certificate with related private key by following the procedure described in Annex A.18 with
the following input and output parameters:

72 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in cap - DUT capabilities
* in PKCS10request - PKCS#10 request
+ in CAcert - CA certificate
* out privateKey - private key
» out cert - certificate
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

* DUT did not send CreatePKCS10CSRResponse message.

A.18 Creating a certificate from a PCKS#10 request

Name: HelperCreateCertificateFromPKCS10CSR

Procedure Purpose: Helper procedure to create an X.509 certificate from a PKCS#10 certification
request.

Pre-requisite: None.

Input: PKCS#10 request (pkcs10) and associated CA certificate (CAcert) and a corresponding
private key (privateKey). The service capabilities (cap).

Returns: An [RFC 5280] compliant X.509 certificate (certResult) from the PKCS#10 request signed
with the private key of the CA certificate.

Procedure:

1. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in privateKey.algorithm - key pair algorithm
» out signatureAlgorithm - signature algorithm

2. Create an [RFC 5280] compliant X.509 certificate (certResult) from the PKCS#10 request
(pkcs10) with the following properties:

www.onvif.org 73

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* version:=v3

* signature := signatureAlgorithm

* subject := subject from the PKCS#10 request (pkcs10)

» subject public key := subject public key in the PKCS#10 request (pkcs10)
+ validity := not before 19700101000000Z and not after 99991231235959Z

« certificate signature is generated with the private key (privateKey) of the CA certificate
(CAcen)

« certificate extensions := the X.509v3 extensions from the PKCS#10 request (pkcs10)

A.19 Uplink Connection Establishment

Name: HelperUplinkConnectionEstablishment

Procedure Purpose: Helper procedure to execute Uplink connection initiated by the DUT to service
endpoint.

Pre-requisite: Uplink is supported by the DUT.
Input: Client Certificate set for Client TLC Authentification (clientAuthentificationCertificate).
Returns: None.
Procedure:
1. The DUT invokes ClientHello with parameters
» ClientVersion =: ticVersion

* Random number =: ClientRandom[32]

CipherSuites

» Compression methods list

SessionID skipped
» Extension: server_name
2. The Service Endpoint TLS server responds with a ServerHello message with parameters

* Version := ticVersion

74 www.onvif.org

OnviF | empnggre

* Random number := ServerRandom[32], that is 4-byte number that consists of the client’s

date and time plus a 28-byte randomly generated number

CipherSuite := the strongest cipher that both the client and server support
* Compression method := NONE
» Session ID := sessionID
3. The Service Endpoint TLS server responds with Certificate message with parameters
+ Certificate.CertificatelD := Service Endpoint Certificate ID
+ Certificate.KeyID := KeyID Service Endpoint Key ID
4. The Service Endpoint TLS server responds with a ServerHelloDone message.
5. The Service Endpoint sends a ClientCertificateRequest message.
6. The DUT sends Certificate =: clientCertificate.

7. The Service Endpoint validates clientCertificate. If clientCertificate does not correspond to
clientAuthentificationCertificate, FAIL the test and skip other steps.

8. The DUT invokes ClientKeyExchange message with parameters
* Premaster Secret =: PreMasterSecret encrypted with KeylD

9. The DUT computes MasterSecret using ClientRandom[32], ServerRandom[32] and
PreMasterSecret.

10.The Service Endpoint TLS server computes MasterSecret using ClientRandom|[32],
ServerRandom([32] and PreMasterSecret.

11. The DUT invokes ChangeCipherSpec message.

12.The DUT invokes encrypted Finished message, containing a hash and MAC over the
previous handshake messages.

13.The Service Endpoint TLS server decrypts the client's Finished message and verify the
hash and MAC.

14.The Service Endpoint TLS server responds its encrypted Finished message, containing a
hash and MAC over the previous handshake messages.

15.The DUT invokes HTTP GET request to to switch connection to HTTP/2 with the following
header

www.onvif.org 75

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* Upgrade = "h2"
* Connection = "Upgrade"

16.The Service Endpoint responds with HTTP 101 Switching Protocols message with
parameters

* Upgrade = "h2"
» Connection = "Upgrade"
Procedure Resulit:
PASS -
» DUT passes all assertions.
FAIL -
* The DUT did not send ClientHello message.
« The DUT did not send ClientKeyExchange message.
+ The DUT did not send ChangeCipherSpec message.

» The DUT TLS server did not send Finished message.

A.20 Device Configuration for Video Streaming

Name: HelperDeviceConfigurationForVideoStreaming

Procedure Purpose: Helper procedure to configure Media profile, Video Encoder Configuration,
and get stream URI from the DUT for video streaming.

Pre-requisite: Media2 Service is received from the DUT.

Input: Required video encoding (requiredVideoEncoding), Transport protocol (protocol), IP version
(ipVersion).

Returns: Stream Uri (streamUri).
Procedure:

1. ONVIF Client selects a Media Profile with required video encoding support by following the
procedure mentioned in Annex A.21 with the following input and output parameters

* in requiredVideoEncoding - required video encoding

76 www.onvif.org

OnviF | empnggre

* out profile - Media Profile with Video Source Configuration and Video Encoder

Configuration with the required video encoding
» out vecOptions - Video Encoder Configuration Options for the Media Profile
2. if protocol = RtspMulticast:

2.1. ONVIF Client removes Audio Encoder Configuration and Metadata Configuration from
media profile by following the procedure mentioned in Annex A.23 with the following
input and output parameters

* in profile - Media Profile
3. ONVIF Client invokes SetVideoEncoderConfiguration request with parameters
» Configuration.@token := profile.Configurations.VideoEncoder.@token
» Configuration.Name := profile.Configurations.VideoEncoder.Name
» Configuration.UseCount := profile.Configurations.VideoEncoder.UseCount

* Configuration.@GovLength := minimum item from vecOptions.@GovLengthRange list (or
skipped if vecOptions.@GovLengthRange skipped)

» Configuration.@Profile := highest value from vecOptions.@ProfilesSupported list as
the order is High/Extended/Main/Baseline (or skipped if vecOptions.@ProfilesSupported
skipped)

» Configuration.Encoding := requiredVideoEncoding

» Configuration.Resolution = resolution closest to 640x480 from
vecOptions.ResolutionsAvailable list

o if vecOptions.@FrameRatesSupported skipped and
profile.Configurations.VideoEncoder.RateControl skipped:

» Configuration.RateControl skipped

o if vecOptions.@FrameRatesSupported or
profile.Configurations.VideoEncoder.RateControl is not skipped:

» Configuration.RateControl. @ConstantBitRate =
vecOptions.@ConstantBitRateSupported

* Configuration.RateControl.FrameRateLimit = value closest to 25
but greater than 1 from vecOptions.@FrameRatesSupported

www.onvif.org 77

ONVIE® | imsgres

list (or profile.Configurations.VideoEncoder.RateControl.FrameRateLimit if

vecOptions.@FrameRatesSupported skipped)

+ Configuration.RateControl.BitrateLimit = min {max
{profile.Configurations.VideoEncoder.RateControl.BitrateLimit,
vecOptions.BitrateRange.Min}, vecOptions.BitrateRange.Max}

« if protocol is not equal to RtspMulticast:

« Configuration.Multicast := profile.Configurations.VideoEncoder.Multicast
« if protocol = RtspMulticast and ipVersion = IPv4:

+ Configuration.Multicast.Address.Type := IPv4

+ Configuration.Multicast.Address.IPv4Address := multicast IPv4 address

Configuration.Multicast.Address.IPv6Address skipped

Configuration.Multicast.Port := port for multicast streaming
» Configuration.Multicast. TTL := 1
+ Configuration.Multicast.AutoStart := false
« if protocol = RtspMulticast and ipVersion = IPv6:
+ Configuration.Multicast.Address.Type := IPv6
+ Configuration.Multicast.Address.IPv4Address skipped

+ Configuration.Multicast.Address.IPv6Address := multicast IPv6 address

Configuration.Multicast.Port := port for multicast streaming

Configuration.Multicast. TTL := 1

Configuration.Multicast.AutoStart ;= false
» Configuration.Quality := vecOptions.QualityRange.Min
4. The DUT responds with SetVideoEncoderConfigurationResponse message.

5. ONVIF Client retrieves a stream uri for Media Profile for required transport protocol by
following the procedure mentioned in Annex A.24 with the following input and output
parameters

* in protocol - Transport protocol

78 www.onvif.org

OnviF | gomansg

* inipVersion - IP Type
* in profile.@token - Media profile token
* out uri - Stream URI
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL —
» DUT did not send SetVideoEncoderConfigurationResponse message.

Note: See Annex A.25 for Name and Token Parameters Length limitations.

A.21 Media2 Service Profile Configuration for Video Streaming

Name: HelperFindMediaProfileForVideoStreaming
Notes: Annex is used at:
» ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to configure Media Profile to contain Video Source
Configuration and Video Encoder Configuration with the required video encoding.

Pre-requisite: Media2 Service is received from the DUT.
Input: Required video encoding (requiredVideoEncoding)

Returns: Media Profile (profile) containing Video Source Configuration and Video Encoder
Configuration with the required video encoding. Video Encoder Configuration Options for the Media
Profile (vecOptions).

Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0Q] := VideoSource
* Type[1] := VideoEncoder

2. The DUT responds with GetProfilesResponse message with parameters

www.onvif.org 79

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Profiles list =: profileList

3. For each Media Profile profile1 in profileList with both Configuration.VideoSource and
Configuration.VideoEncoder repeat the following steps:

3.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions request with
parameters

» ConfigurationToken := profile1.Configuration.VideoEncoder.@token
* ProfileToken := profile1.@token

3.2. DUT responds with GetVideoEncoderConfigurationOptionsResponse message
with parameters

» Options list =: optionsList
3.3. If optionsList list contains item with Encoding = requiredVideoEncoding:
3.3.1. Set profile := profile1.

3.3.2. Set vecOptions := item with Encoding = requiredVideoEncoding from
optionsList list.

3.3.3. Skip other steps in procedure.

4. For each Media Profile profile1 in profileList that contains VideoSource configuration repeat
the following steps:

4.1. If profile1.Configurations.VideoSource.@token is different from video source
configuration token of previous profiles in cycle:

4.1.1. ONVIF Client invokes GetVideoEncoderConfigurations request with
parameters

+ ConfigurationToken skipped
 ProfileToken := profile1.@token

4.1.2. The DUT responds with GetVideoEncoderConfigurationsResponse with
parameters

» Configurations list =: videoEncoderConfList

4.1.3. For each Video Encoder Configuration videoEncoderConfiguration1 in
videoEncoderConfList repeat the following steps:

80 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4.1.3.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions
request with parameters

+ ConfigurationToken := videoEncoderConfiguration1.@token
+ ProfileToken := profile1.@token

41.3.2. DUT responds with
GetVideoEncoderConfigurationOptionsResponse message
with parameters

» Options list =: optionsList

41.3.3. If optionsList list contains item with Encoding =
requiredVideoEncoding:

4.1.3.3.1. ONVIF Client invokes AddConfiguration request with
parameters

ProfileToken := profile1.@token

* Name skipped

Configuration[0]. Type := VideoEncoder

Configuration[0]. Token .=
videoEncoderConfiguration1.@token

4.1.3.3.2. The DUT responds with AddConfigurationResponse
message.

4.1.3.3.3. Set profile := profile1.

41.3.34. Set vecOptions := item with Encoding =
requiredVideoEncoding from optionsList list.

4.1.3.3.5. Skip other steps in procedure.
. Set profile1 := profileList[0]
. Set confTypeList := (configurations that are contained in profile profile1)

. ONVIF Client removes all configurations from the Media Profile by following the procedure
mentioned in Annex A.22 with the following input and output parameters

* in confTypelList - list of configuration type to remove from Media Profile

www.onvif.org 81

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in profile1 - Media Profile to update
8. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken := profile1.@token
9. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList

10.For each Video Source Configuration videoSourceConfiguration1 in videoSourceConfList
repeat the following steps:

10.1. ONVIF Client invokes AddConfiguration request with parameters
* ProfileToken := profile1.@token
* Name skipped
» Configuration[0].Type := VideoSource
» Configuration[0]. Token := videoSourceConfiguration1.@token
10.2. The DUT responds with AddConfigurationResponse message.
10.3. ONVIF Client invokes GetVideoEncoderConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken := profile1.@token

10.4. The DUT responds with GetVideoEncoderConfigurationsResponse with
parameters

» Configurations list =: videoEncoderConfList

10.5. For each Video Encoder Configuration videoEncoderConfiguration1 in
videoEncoderConfList repeat the following steps:

10.5.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions request
with parameters

» ConfigurationToken := videoEncoderConfiguration1.@token

» ProfileToken := profile1.@token

82 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

10.5.2. DUT responds with GetVideoEncoderConfigurationOptionsResponse

message with parameters
* Options list =: optionsList
10.5.3. If optionsList list contains item with Encoding = requiredVideoEncoding:

10.5.3.1. ONVIF Client invokes AddConfiguration request with
parameters

+ ProfileToken := profile1.@token
* Name skipped
» Configuration[0].Type := VideoEncoder

+ Configuration[0].Token =
videoEncoderConfiguration1.@token

10.5.3.2. The DUT responds with AddConfigurationResponse
message.

10.5.3.3. Set profile := profile1.

10.5.34. Set vecOptions = item with Encoding =

requiredVideoEncoding from optionsList list.
10.5.3.5. Skip other steps in procedure.
11. FAIL the test and skip other steps.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
» DUT did not send GetVideoEncoderConfigurationOptionsResponse message.
+ DUT did not send GetVideoEncoderConfigurationsResponse message.
» DUT did not send AddConfigurationResponse message.

« DUT did not send GetVideoSourceConfigurationsResponse message.

www.onvif.org 83

O n VI F ® | Standardizing IP Connectivity
for Physical Security

A.22 Removing Configurations from Media Profile

Name: HelperRemoveConfigurationsFromMediaProfile
Notes: Annex is used at:

* ONVIF Real Time Streaming using Media2 Device Test Specification
Procedure Purpose: Helper Procedure to remove configuartions from Media Profile.
Pre-requisite: Media2 Service is received from the DUT.

Input: Media Profile (profile). List of configuration type to remove from profile (confTypeList).
Returns: None.
Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token := profile.@token
+ Type[0] := All
2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

3. If profileList[0] contains at least one Configuration with type equals to configuration type from
confTypelist:

3.1. ONVIF Client invokes RemoveConfiguration request with parameters
 ProfileToken := profile.@token

 If profileList[0] contains Configuration.VideoSource and confTypeList contains
VideoSource:

» Configuration[0].Type := VideoSource
» Configuration[0].Token skipped

» If profileList[0] contains Configuration.VideoEncoder and confTypeList contains
VideoEncoder:

» Configuration[1].Type := VideoEncoder

» Configuration[1].Token skipped

84 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

 If profileList[0] contains Configuration.AudioSource and confTypeList contains
AudioSource:

» Configuration[2].Type := AudioSource
» Configuration[2].Token skipped

* If profileList[0] contains Configuration.AudioEncoder and confTypeList contains
AudioEncoder:

» Configuration[3].Type := AudioEncoder
» Configuration[3].Token skipped

« If profileList{0] contains Configuration.AudioOutput and confTypeList contains
AudioOutput:

» Configuration[4].Type := AudioOutput
+ Configuration[4].Token skipped

* If profileList[0] contains Configuration.AudioDecoder and confTypelList contains
AudioDecoder:

» Configuration[5].Type := AudioDecoder
» Configuration[5].Token skipped

» If profileList{0] contains Configuration.Metadata and confTypeList contains
Metadata:

» Configuration[6].Type := Metadata
» Configuration[6]. Token skipped
« If profileList[0] contains Configuration.Analytics and confTypeList contains Analytics:
» Configuration[7]. Type := Analytics
» Configuration[7].Token skipped
« If profileList[0] contains Configuration.PTZ and confTypeList contains PTZ:
+ Configuration[8].Type := PTZ

» Configuration[8].Token skipped

www.onvif.org 85

O n VI F ® | Standardizing IP Connectivity
for Physical Security

3.2. The DUT responds with RemoveConfigurationResponse message.

Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.

+ DUT did not send RemoveConfigurationResponse message.

A.23 Removing Audio Encoder Configuration and Metadata
Configuration from Media Profile

Name: HelperRemoveAudioEncoderConfigAndMetadataConfigFromMediaProfile

Procedure Purpose: Helper Procedure to guarantee that Media Profile does not contain Audio
Encoder Configuration and Metadata Configuration.

Pre-requisite: Media2 Service is received from the DUT.
Input: Media Profile (profile)
Returns: None.
Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token := profile.@token
* Type[0] := AudioEncoder
* Type[1] := Metadata
2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
3. If profileList[0] contains Configuration.AudioEncoder or Configuration.Metadata:
3.1. ONVIF Client invokes RemoveConfiguration request with parameters

* ProfileToken := profile1.@token

86 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

« If profileList[0] contains Configuration.AudioEncoder:

» Configuration[0]. Type := AudioEncoder
» Configuration[0].Token skipped
« If profileList[0] contains Configuration.Metadata:
» Configuration[1].Type := Metadata
» Configuration[1].Token skipped
3.2. The DUT responds with RemoveConfigurationResponse message.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL —
» DUT did not send GetProfilesResponse message.

« DUT did not send RemoveConfigurationResponse message.

A.24 Get Stream Uri

Name: HelperGetStreamUri
Procedure Purpose: Helper procedure to get stream URI from the DUT.
Pre-requisite: Media2 Service is received from the DUT.

Input: Protocol (protocol). Media Profile token (token). IP type (ipType) (optional parameter, IPv4
by default).

Returns: Stream Uri (streamUri).
Procedure:
1. ONVIF Client invokes GetStreamUri request with parameters
* Protocol := protocol
* ProfileToken := token

2. The DUT responds with GetStreamUriResponse message with parameters

www.onvif.org 87

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Uri =: streamUri
3. If streamUri is longer than 128 octets, FAIL the test and skip other steps.
4. If ipType skipped, set ipType := IPv4.
5. If streamUriip type is not equal to ipType, FAIL the test and skip other steps.
6. If protocol = RtspOverHittp:

6.1. If streamUri doesn't have the same port with the web service, FAIL the test and skip
other steps.

6.2. If streamUri doesn't have the same scheme with the web service ('http’ or 'hitps'), FAIL
the test and skip other steps.

7. If protocol = RtspOverHttp:
7.1. If streamUri doesn't have scheme equal to 'rtsp’, FAIL the test and skip other steps.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetStreamUriResponse message.

A.25 Name and Token Parameters

There are the following limitations on maximum length of the Name and Token parameters that shall
be used during tests by ONVIF Device Test Tool to prevent faults from DUT:

+ Name shall be less than or equal to 64 characters (only readable characters accepted).
» Token shall be less than or equal to 64 characters (only readable characters accepted).
» UTF-8 character set shall be used for Name and Token.

Note: these limitations will not be used, if ONVIF Device Test Tool reuses values that were received
from the DUT.

A.26 Set Up Uplink Connection

Name: HelperSetUpUplinkConnection

88 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure Purpose: Helper procedure to set up Uplink connection between the DUT and uplink

service endpoint of the ONVIF Client.

Pre-requisite: Uplink Service is received from the DUT.
Input: None

Returns: None.

Procedure:

1. ONVIF Client removes any existing uplink configurations by following the procedure
mentioned in Annex A.1.

2. ONVIF Client configures certificate on a DUT that will be used for client authentication by
following the procedure mentioned in Annex A.2

+ out certificateDUT - Certificate that uploaded to the DUT with private key.
 out certld - Certificate Id for the certificatethat uploaded to the DUT with private key.
3. ONVIF Client starts service endpoint.

4. ONVIF Client invokes SetUplink request with parameters

RemoteAddress := IPv4 address and port of service endpoint

CertificatelD := certld

¢ UserLevel := "Administrator"

Status skipped

CertPathValidationPolicylD skipped
5. The DUT responds with SetUplinkResponse message.

6. ONVIF Client awaits device connecting to service endpoint by following the procedure
mentioned in Annex A.19

* in certificate - Client Certificate for TLS authentification.
Procedure Result:
PASS -
* DUT passed all assertions.

FAIL —

www.onvif.org 89

ONVIE® | imsgres

+ DUT did not send SetUplinkResponse message.

A.27 Media Streaming over WebSocket

Name: HelperStreamingOverWebSocket
Procedure Purpose: Helper procedure to verify media streaming over WebSocket.
Pre-requisite: WebSocket is supported by the DUT.

Input: Uri for media streaming (streamUri). Media type (mediaType). Expected media stream
encoding (encoding).

Returns: None
Procedure:

1. ONVIF Client gets Web Socket Uri by following the procedure mentioned in Annex A.28 with
the following output parameters

e out uri - Web Socket Uri

2. ONVIF Client establishes a WebSocket Connection by following the procedure mentioned
in Annex A.30 with the following input and output parameters

* in uri - Web Socket Uri
3. ONVIF Client invokes RTSP DESCRIBE request to streamUri address over WebSocket.
4. The DUT responds with 200 OK message over WebSocket with parameters

* Response header =: responseHeader

» SDP information =: sdp

5. If sdp does not contain Media Type = mediaType with rtpmap value corresponding to
encoding and without session attribute "sendonly" (a=sendonly), FAIL the test and skip other
steps.

6. ONVIF Client checks types of IP addresses returned in response to DESCRIBE by following
the procedure mentioned in Annex A.32 with the following input parameters

* in responseHeader - header of response to DESCRIBE
* in sdp - SDP information

* in streamUri - Uri for media streaming

90 www.onvif.org

ONVIE® | imsgres

7. ONVIF Client invokes RTSP SETUP request over WebSocket to uri address, which
corresponds to mediaType media type (see [RFC2326] for details), with parameters

* Transport := RTP/AVP/TCP;unicast;interleaved=0-1

8. The DUT responds with 200 OK message over WebSocket with parameters
* Transport
* Session =: session

9. ONVIF Client invokes RTSP PLAY request over WebSocket to uri address, which
corresponds to aggregate control (see [RFC2326] for details), with parameters

» Session ;= session

10.The DUT responds with 200 OK message over WebSocket with parameters
» Session
* RTP-Info

11.If DUT does not send encoding RTP media stream to ONVIF Client over RTSP control
connection, FAIL the test and skip other steps.

12.1f DUT does not send valid RTCP packets, FAIL the test and skip other steps.

13.ONVIF Client invokes RTSP TEARDOWN request over WebSocket to uri address, which
corresponds to aggregate control (see [RFC2326] for details), with parameters

» Session := session
14.The DUT responds with 200 OK message over WebSocket with parameters
+ Session
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

« DUT did not send RTSP 200 OK response over WebSocket for RTSP DESCRIBE, RTSP
SETUP, RTSP PLAY and RTSP TEARDOWN requests.

* RTSP Session is terminated by DUT during media streaming.

www.onvif.org 91

O n VI F ® Standardizing IP Connectivity
for Physical Security

Note: See Annex A.33 for invalid RTP header definition.

Note: If encoding = MP4A-LATM, then rtpmap value may be equal either MP4A-LATM or MPEG4-
GENERIC at step 5.

A.28 Get WebSocket URI

Name: HelperGetWebSocketURI

Procedure Purpose: Helper procedure to get WebSocket URI.
Pre-requisite: WebSocket is supported by the DUT.

Input: None.

Returns: WebSocket URI uri.

Procedure:

1. ONVIF Client retrieves Media2 Service capabilities by following the procedure mentioned in
Annex A.29 with the following input and output parameters

* out cap - Media2 Service capabilities
2. Set uri ;= cap.StreamingCapabilities.RTSPWebSocketUri

3. If hierarchical component (hier_part in [rfc2396]) of uri is absolute path construction
(abs_path in [rfc2396]):

3.1ONVIF Client confugures WebSocket URI (uri) with host and port based on uri, URI of
the DUT, and HTTP/HTTPS port of the DUT.

Procedure Result:
PASS —

* DUT passes all assertions.
FAIL -

* None.

A.29 Get Media2 Service Capabilities

Name: HelperGetServiceCapabilities

92 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure Purpose: Helper procedure to get Media2 Service Capabilities from the DUT.

Pre-requisite: Media2 Service is received from the DUT.
Input: None
Returns: The service capabilities (cap).
Procedure:
1. ONVIF Client invokes GetServiceCapabilities request.
2. The DUT responds with GetServiceCapabilitiesResponse message with parameters
* Capabilities =: cap
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetServiceCapabilitiesResponse message.

A.30 Web Socket Handshake

Name: HelperWebSocketHandshake

Procedure Purpose: Helper procedure to establish a WebSocket Connection.
Pre-requisite: WebSocket is supported by the DUT.

Input: Web Socket Uri (uri)

Returns: None.

Procedure:

1. ONVIF Client generates a Sec-WebSocket-Key value by following the procedure mentioned
in Annex A.31 with the following input and output parameters

* out webSocketKey - Sec-WebSocket-Key value.
2. ONVIF Client invokes HTTPS GET request to uri with parameters

* Upgrade =: "websocket"

www.onvif.org 93

O n VI F ® Standardizing IP Connectivity
for Physical Security

» Connection =: "Upgrade"

Sec-WebSocket-Key =: webSocketKey

Sec-WebSocket-Protocol =: "rtsp.onvif.org"

Sec-WebSocket-Version =: "13"
3. The DUT responds with HTTPS 101 Switching Protocols message with parameters
» Upgrade =: upgrade

* Connection =: connection

Sec-WebSocket-Accept =: accept

Sec-WebSocket-Protocol =: protocol
4. If upgrade is not equal to "websocket", FAIL the test and skip other steps.
5. If connection is not equal to "Upgrade"”, FAIL the test and skip other steps.

6. If accept other than the base64-encoded SHA-1 of the concatenation of the webSocketKey
(see RFC[6455] 4.1. Client Requirements), FAIL the test and skip other steps.

7. If protocol is not equal to "rtsp.onvif.org", FAIL the test and skip other steps.
Procedure Result:
PASS —

* DUT passes all assertions.
FAIL -

» DUT did not send HTTP 101.

A.31 Sec-WebSocket-Key value generation

Name: HelperGenerateSecWebSocketKey

Procedure Purpose: Helper procedure to generate a Sec-WebSocket-Key value that is compliant
to [RFC6455] and [RFC4648].

Pre-requisite: None.

Input: None.

94 www.onvif.org

ONVIE® | imsgres

Returns: Sec-WebSocket-Key value (webSocketKey)
Procedure:

1. ONVIF Client generates a nonce consisting of a randomly selected 16-byte Sec-WebSocket-
Key value that has been base64-encoded (see Section 4 of [RFC4648] and section 4.1 of
[RFC6455]).

A.32 Check of IP address type in response to RTSP
DESCRIBE

Name: HelperlPAddressTypelnRTSP

Procedure Purpose: Helper procedure to check IP addresses types returned by DUT in response
to RTSP DESCRIBE.

Pre-requisite: None.
Input: Header of response to DESCRIBE (responseHeader). SDP (sdp). Stream Uri (streamUri).
Returns: None.
Procedure:
1. SetipType := streamUri IP type.
2. For each Content-Base field in responseHeader (contentBase) that has absolute IP value:

2.1. If contentBase IP value does not correspond to ipType, FAIL the test and skip other
steps (see [RFC2326] for details).

3. For each Content-Location field in responseHeader (contentLocation) that has absolute
IP value:

3.1. If contentLocation IP value does not correspond to ipType, FAIL the test and skip other
steps (see [RFC2326] for details).

4. For each "a=control” attribute in sdp (aControl) that has absolute IP value:

4.1. If aControl IP value does not correspond to ipType, FAIL the test and skip other steps
(see [RFC2326] for details).

5. IfipType = IPv4:

5.1. If sdp contains at least one origin field ("o=") with addrtype != "IP4", FAIL the test and
skip other steps (see [RFC4566] for details).

www.onvif.org 95

OnviF | empnggre

5.2. If sdp contains at least one origin field ("o=") with IP type of unicast-address sub-
field 1= IPv4 type, FAIL the test and skip other steps (see [RFC4566] for details).

5.3. If sdp contains at least one connection data field ("c=") with addrtype != "IP4", FAIL
the test and skip other steps (see [RFC4566] for details).

5.4. If sdp contains at least one connection data field ("c=") with IP type of connection
address sub-field |= IPv4 type, FAIL the test and skip other steps (see [RFC4566] for
details).

6. If ipType = IPV6:

6.1. If sdp contains at least one origin field ("o=") with addrtype != "IP6", FAIL the test and
skip other steps (see [RFC4566] for details).

6.2. If sdp contains at least one origin field ("o=") with IP type of unicast-address sub-
field 1= IPv6 type, FAIL the test and skip other steps (see [RFC4566] for details).

6.3. If sdp contains at least one connection data field ("c=") with addrtype != "IP6", FAIL
the test and skip other steps (see [RFC4566] for details).

6.4. If sdp contains at least one connection data field ("c=") with IP type of connection
address sub-field |= IPv6 type, FAIL the test and skip other steps (see [RFC4566] for
details).

Procedure Result:

PASS —

* DUT passes all assertions.

FAIL —

* None.

A.33 Invalid RTP Header

A RTP header, which is not formed according to the header field format defined in the RFC 3550
Section 5.1, is considered an invalid RTP header.

A.34 Get service capabilities for Advanced Security service

Name: HelperGetServiceCapabilities_AdvancedSecurity

Notes: Annex is used at:

96

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

ONVIF Real Time Streaming using Media2 Device Test Specification

ONVIF Security Configuration Device Test Specification

ONVIF Base Device Test Specification

» ONVIF Media2 Configuration Device Test Specification
Procedure Purpose: Helper procedure to get service capabilities.
Pre-requisite: Security Configuration Service is received from the DUT.
Input: None
Returns: The service capabilities (cap).
Procedure:

1. ONVIF Client invokes GetServiceCapabilities

2. The DUT responds with GetServiceCapabilitiesResponse message with parameters

» Capabilities =: cap

Procedure Resulit:
PASS -

» DUT passes all assertions.
FAIL -

» DUT did not send GetServiceCapabilitiesResponse message.

A.35 Create a certification path validation policy for
authentication server configuration
Name: HelperCreateCertPathValidationPolicyForAuthServer
Notes: Annex is used at:
» ONVIF Security Configuration Device Test Specification
* ONVIF Uplink Test Specification

* ONVIF Real Time Streaming using Media2 Device Test Specification

www.onvif.org 97

OnviF | empnggre

» ONVIF Media2 Configuration Device Test Specification

Procedure Purpose: Helper procedure to create a certification path validation policy for
authentication server configuration.

Pre-requisite: Security = Configuration Service is received from the DUT.
Certification path validation policy supported by the DUT as indicated by the
MaximumNumberOfCertificationPathValidationPolicies capability. UploadCertificate is supported
by the DUT as indicated by the PKCS10ExternalCertificationWithRSA or PKCS10 capability. The
DUT shall have enough free storage capacity for one additional certification path validation policy.
The DUT shall have enough free storage capacity for one additional certification path. The DUT
shall have enough free storage capacity for one additional certificate. The DUT shall have enough
free storage capacity for one additional key pair.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm). The certification
path validation policy alias (certPathValidationPolicyAlias). The subject (subject) of CA certificate
(optional input parameter, could be skipped).

Returns: The certification path validation policy identifier (certPathValidationPolicylD), related
certificate (certID), key pair (keyID), CA certificate (out CAcert) CA certificate private key (out
privateKey).

Procedure:

1. ONVIF Client creates a CA certificate and a corresponding private key by following the
procedure described in Annex A.7 with the following input and output parameters:

* in cap - DUT capabilities
» out CAcert - CA certificate
* out privateKey - private key
2. ONVIF Client invokes UploadCertificate with parameters
+ Certificate := CAcert
+ Alias := "ONVIF Test"
» PrivateKeyRequired : = false
3. The DUT responds with a UploadCertificateResponse message with parameters
 CertificatelD =: certID

* KeylD =: keylD

98 www.onvif.org

OnviF | empnggre

4. ONVIF Client creates certification path validation policy identifier with specified alias and the

certificate identifier for trust anchor by following the procedure mentioned in Annex A.36 with
the following input and output parameters:.

* in certID - certificate identifier for trust anchor
* in certPathValidationPolicyAlias - certification path validation policy alias
» out certPathValidationPolicylID - certification path validation policy identifier
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL —

» DUT did not send UploadCertificateResponse message.

A.36 Create a certification path validation policy with provided
certificate identifier
Name: HelperCreateCertPathValidationPolicyWithCertID
Notes: Annex is used at:
» ONVIF Security Configuration Device Test Specification
* ONVIF Uplink Test Specification
* ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to create a certification path validation policy with provided
certificate identifier.

Pre-requisite: Security =~ Configuration Service is received from the DUT.
Certification path validation policy supported by the DUT as indicated by the
MaximumNumberOfCertificationPathValidationPolicies capability. The DUT shall have enough free
storage capacity for one additional certification path validation policy.

Input: The certification path validation policy alias (alias) and the certificate identifier (certID) for
trust anchor.

Returns: The certification path validation policy identifier (certPathValidationPolicyID).

www.onvif.org 99

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure:
1. ONVIF Client invokes CreateCertPathValidationPolicy with parameters
* Alias := alias
» Parameters.RequireTLSWWW(ClientAuthExtendedKeyUsage skipped
» Parameters.UseDeltaCRLs = true

* Parameters.anyParameters skipped

TrustAnchor[0].CertificatelD := cert/D
* anyParameters skipped

2. The DUT responds with CreateCertPathValidationPolicyResponse message with
parameters

» CertPathValidationPolicylD := certPathValidationPolicylD
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send CreateCertPathValidationPolicyResponse message.

A.37 Provide certificate signed by private key of other
certificate
Name: HelperCreateSignedCertificate
Notes: Annex is used at:
» ONVIF Security Configuration Device Test Specification
» ONVIF Uplink Test Specification
» ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to create an X.509 certificate signed by private key of other
certificate.

100 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-requisite: None.

Input: The subject (subject) of certificate and private key (inputPrivateKey) of the CA-certificate
(cert). The service capabilities (cap). The key pair algorithm (keyAlgorithm). Certificate SAN
(certSAN, optional).

Returns: An X.509 certificate (cert) signed by input private key that is compliant to [RFC 5280] and
a corresponding key pair (keyPair) with the corresponding private key and public key.

Procedure:

1. ONVIF Client generates a key pair by following the procedure mentioned in Annex A.9 with
the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* out keyPair - key pair

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in inputPrivateKey.algorithm - key pair algorithm
» out signatureAlgorithm - signature algorithm

3. ONVIF Client creates an X.509 certificate signed by inputPrivateKey that is compliant to
[RFC 5280] and has the following properties:

+ version:=v3

» signature := signatureAlgorithm
* publicKey := keyPair.publicKey

+ validity := validity from cert

* subject := subject

* SAN := certSAN

* issuerDN := subjectDN from cert

Note: ONVIF Client may return the same certificate in subsequent invocations of this procedure for
the same subject and private key.

www.onvif.org 101

OnviF | empnggre

A.38 Make Sure That At Least One Authorization Server
Configuration Could Be Created

Name: HelperEmptySpaceForOneAuthorizationServerConfiguration
Notes: Annex is used at:

* ONVIF Security Configuration Device Test Specification

» ONVIF Uplink Test Specification

* ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to remove one authorization server configuration if
maximum is reached.

Pre-requisite: Security Configuration Service is received from the DUT. Authorization Server
Configuration is supported by the DUT as indicated by the AuthorizationServer.MaxConfigurations
capability.

Input: The service capabilities (cap).

Returns: Removed authorization server configuration (removedAuthServerConfiguration), could
be empty.

Procedure:

1. ONVIF Client gets current authorization server configurations by following the procedure
mentioned in Annex A.39 with the following input and output parameters:

» out authServerConfigurations1 list - authorization server configurations

2. If authServerConfigurations1 items number is equal to
cap.AuthorizationServer.MaxConfigurations:

2.1. Set the following:
» removedAuthServerConfiguration := authServerConfigurations1[0]

2.2. ONVIF Client invokes DeleteAuthorizationServerConfiguration with parameter
» Token := removedAuthServerConfiguration.token

2.3. The DUT responds with DeleteAuthorizationServerConfigurationResponse
message.

Procedure Result:

102 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

PASS —
* DUT passes all assertions.
FAIL —

» DUT did not send DeleteAuthorizationServerConfigurationResponse message.

A.39 Get Authorization Server Configurations List

Name: HelperGetAuthorizationServerConfigurations
Notes: Annex is used at:

» ONVIF Security Configuration Device Test Specification

» ONVIF Uplink Test Specification

* ONVIF Real Time Streaming using Media2 Device Test Specification
Procedure Purpose: Helper procedure to get authorization server configurations list.

Pre-requisite: Security Configuration Service is received from the DUT. Authorization Server
Configuration is supported by the DUT as indicated by the AuthorizationServer.MaxConfigurations
capability.

Input: None
Returns: Authorization server configurations list (authServerConfigurations).
Procedure:
1. ONVIF Client invokes GetAuthorizationServerConfigurations request with parameters
* Token is skipped

2. The DUT responds with GetAuthorizationServerConfigurationsResponse message with
parameters

» Configuration list =: authServerConfigurations
Procedure Result:
PASS —
* DUT passes all assertions.

FAIL -

www.onvif.org 103

OnviF | empnggre

» DUT did not send GetAuthorizationServerConfigurationsResponse message.

A.40 Create Key Pair and Receive Public Key

Name: HelperCreateKeyPairAndReceivePublicKey
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Uplink Test Specification
Procedure Purpose: Helper procedure to create a key pair and get public key from the device.

Pre-requisite: Security Configuration Service is received from the DUT. Create PCKS#10
supported by the DUT as indicated by the PKCS10 or PKCS10ExternalCertificationWithRSA
capability. On-board ECC or RSA key pair generation is supported by the DUT as indicated by
the ECCKeyPairGeneration or RSAKeyPairGeneration capability. The DUT shall have enough free
storage capacity for one additional key pair. Current time of the DUT shall be at least Jan 01, 1970.

Input: The service capabilities (cap). The CSR key pair algorithm (csrKeyAlgorithm).
Returns: The identifier of the new key pair (keyID), a public key (publicKey).
Procedure:

1. ONVIF Client creates a key pair by following the procedure mentioned in Annex A.13 with
the following input and output parameters:

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
* out csrKeylD - key pair ID

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.8 with the following input and output parameters:

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
» out caSignatureAlgorithm - signature algorithm
3. ONVIF Client invokes CreatePKCS10CSR with parameters

» Subject := subject (see Annex A.15)

104 www.onvif.org

O nVI F ® Standardizing IP Connectivity
for Physical Security

* KeylD := csrKeylD
* CSRAttribute skipped
 SignatureAlgorithm.algorithm := signatureAlgorithm
4. The DUT responds with CreatePKCS10CSRResponse message with parameters
* PKCS10CSR =: PKCS10request
5. ONVIF Client extracts public key publicKey from PKCS10request.
Procedure Result:
PASS -
» DUT passes all assertions.
FAIL -

* DUT did not send CreatePKCS10CSRResponse message.

www.onvif.org 105

