ONVIF | sgn g

ONVIF®

Media2 Configuration
Device Test Specification

Version 25.12

December 2025

www.onvif.org

OnviF’ | wsmanggres

© 2025 ONVIF, Inc. All rights reserved.

Recipients of this document may copy, distribute, publish, or display this document so long as this
copyright notice, license and disclaimer are retained with all copies of the document. No license is
granted to modify this document.

THIS DOCUMENT IS PROVIDED "AS 1S," AND THE CORPORATION AND ITS MEMBERS
AND THEIR AFFILIATES, MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THIS DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS
DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES
WERE REASONABLY FORESEEABLE, AND ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS DOCUMENT. THE FOREGOING DISCLAIMER AND
LIMITATION ON LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS
AND WARRANTIES MADE BY THE MEMBERS AND THEIR RESPECTIVE AFFILIATES TO
THE CORPORATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE
CORPORATION.

2 www.onvif.org

Onvie

REVISION HISTORY

Vers. Date Description

16.06 Feb 12, 2016 | Original publication

16.06 Feb 19, 2016 | Step 11 and diagram have been updated in test 4.1.3 updated
according to the feedback of Bhetanabottla Sriram

16.06 Feb 25, 2016 | The issue in last step in tests MEDIA2-4-2-3 has been fixed

16.06 Mar 8, 2016 | The tests 4.1.1 — 4.1.3 have been updated according to the
feedback from F2F Tokyo.
OSD configuration tests have been added

16.06 Mar 15, 2016 | The tests MEDIA2-4-4-1 - MEDIA2-4-4-4 have been updated
according to Fredrik’s feedback.

16.06 Apr 4, 2016 | The response for SetOSD and DeleteOSD requests have been
updated according to the notes from Sano Hiroyuki

16.07 Jun 23, 2016 | Test numbering and document version have been fixed

16.07 Jul 13, 2016 | F2F commnets implemented.

16.07 Jul 14, 2016 | Notes from F. Svensson implemented. Tests sequences updated.

16.07 Jul 27, 2016 | Review comments implemented

16.07 Aug 8, 2016 | Comments from Nicolas Brochu implemented

17.01 Oct 4, 2016 | The test MEDIA2-4-4-2 have been updated.
Pre-Requisite of the tests MEDIA2-4-4-1 - MEDIA2-4-4-4 have been
updated.

17.01 Oct 13, 2016 | Test case MEDIA2-4-5-1 SNAPSHOT URI has been added.
Annex A.5 Configure Media profile with Video Source Configuration
and Video Encoder Configuration has been added.

17.01 Oct 26, 2016 | The following test cases and annexes were added in the scope of

#1154:
MEDIA2-5-1-1 GET VIDEO SOURCE CONFIGURATION OPTIONS
MEDIA2-5-1-2 GET VIDEO SOURCE CONFIGURATIONS

MEDIA2-5-1-3 VIDEO SOURCE CONFIGURATIONS AND VIDEO
SOURCE CONFIGURATION OPTIONS CONSISTENCY

MEDIA2-5-1-4 PROFILES AND VIDEO
CONFIGURATIONS CONSISTENCY

MEDIA2-5-1-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS

SOURCE

MEDIA2-5-1-6 GET VIDEO SOURCE CONFIGURATIONS -
INVALID TOKEN

A.8 Get Service Capabilities
A.7 Get Video Source Configurations List

www.onvif.org

Standardizing IP Connectivity
for Physical Security

OnviF: | wsmasggres

A.6 Configure Media profile with Video Source Configuration

17.01 Oct 26, 2016 | The following test cases and annexes were added in the scope of
#1160:
MEDIA2-6-1-1 GET AUDIO SOURCE CONFIGURATION OPTIONS
MEDIA2-6-1-2 GET AUDIO SOURCE CONFIGURATIONS
MEDIA2-6-1-3 AUDIO SOURCE CONFIGURATIONS AND AUDIO
SOURCE CONFIGURATION OPTIONS CONSISTENCY
MEDIA2-6-1-4 PROFILES AND AUDIO SOURCE
CONFIGURATIONS CONSISTENCY
MEDIA2-6-1-5 MODIFY ALL SUPPORTED AUDIO SOURCE
CONFIGURATIONS
MEDIA2-6-1-6 GET AUDIO SOURCE CONFIGURATIONS -
INVALID TOKEN
A.9 Get Audio Source Configurations List
A.10 Configure Media profile with Audio Source Configuration
17.01 Oct 26, 2016 | The following test cases and annexes were added in the scope of
#1166:
MEDIA2-4-5-1 SNAPSHOT URI
A.5 Configure Media profile with Video Source Configuration and
Video Encoder Configuration
17.01 Oct 26, 2016 | The following test cases and annexes were added in the scope of

#1170:

MEDIA2-4-1-2 CREATE MEDIA PROFILE WITH PRE-DEFINED
CONFIGURATION

MEDIA2-4-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION

MEDIA2-4-2-4 VIDEO ENCODER CONFIGURATIONS - ALL
SUPPORTED VIDEO ENCODER CONFIGURATIONS

MEDIA2-4-3-1 G.711 AUDIO ENCODER CONFIGURATION
MEDIA2-4-3-2 AAC AUDIO ENCODER CONFIGURATION

MEDIA2-6-1-5 MODIFY ALL SUPPORTED AUDIO SOURCE
CONFIGURATIONS

MEDIA2-5-1-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS

The following annexes were added in the scope of #1170:
A.11 Delete Media Profile if Max Reached

A.12 Crete PullPoint Subscription

A.14 Retrieve Profile Changed Event by PullPoint
A.13 Delete Subscription

A.16 Get Video Encoder Configurations List

www.onvif.org

OnviF: | wsmasggres

A.17 Get Audio Encoder Configurations List

A.15 Retrieve Configuration Changed Event by PullPoint

17.01 Oct 27, 2016 | MEDIA2-4-4-2 was updated to get last PositionOption for second
create

17.01 Oct 28, 2016 | The following test cases and annexes were added in the scope of
#1162:
MEDIA2-7-1-1 GET AUDIO OUTPUT CONFIGURATION OPTIONS
MEDIA2-7-1-2 GET AUDIO OUTPUT CONFIGURATIONS
MEDIA2-7-1-3 AUDIO OUTPUT CONFIGURATIONS AND AUDIO
OUTPUT CONFIGURATION OPTIONS CONSISTENCY
MEDIA2-7-1-4 PROFILES AND AUDIO OUTPUT
CONFIGURATIONS CONSISTENCY
MEDIA2-7-1-5 MODIFY ALL SUPPORTED AUDIO OUTPUT
CONFIGURATIONS
MEDIA2-7-1-6 GET AUDIO OUTPUT CONFIGURATIONS -
INVALID TOKEN
MEDIA2-8-1-1 GET AUDIO DECODER CONFIGURATION
OPTIONS
MEDIA2-8-1-2 GET AUDIO DECODER CONFIGURATIONS
MEDIA2-8-1-3 PROFILES AND AUDIO DECODER
CONFIGURATIONS CONSISTENCY
MEDIA2-8-1-4 MODIFY ALL SUPPORTED AUDIO DECODER
CONFIGURATIONS
MEDIA2-8-1-5 GET AUDIO DECODER CONFIGURATIONS -
INVALID TOKEN
A.18 Get Audio Output Configurations List
A.19 Configure Media profile with Audio Output Configuration
A.20 Get Audio Decoder Configurations List
A.21 Configure Media profile with Audio Output Configuration and
Audio Decoder Configuration

17.01 Oct 28, 2016 | The following test cases and annexes were added in the scope of
#1172;
MEDIA2-9-1-1 READY TO USE MEDIA PROFILE FOR PTZ

17.01 Oct 28, 2016 | The following test cases and annexes were added in the scope of

#1180:

MEDIA2-10-1-1 GET VIDEO SOURCE MODES
MEDIA2-10-1-2 SET VIDEO SOURCE MODES
A.22 Get Video Sources List

A.23 Waiting for Reboot

www.onvif.org

OnviF | empnggre

17.01 Nov 13, 2016 | The following test cases and annexes were added in the scope of
#1156:

MEDIA2-4-2-5 VIDEO ENCODER INSTANCES

A.24 Find Guaranteed Number of Media Profiles for Video Source
Configuration

A.25 Configure Video Encoder Configuration to Get Guaranteed
Number of Media Profiles for Video Source Configuration

A.26 Add Video Encoder Configuration to Get Guaranteed Number
of Media Profiles for Video Source Configuration

A.27 Create New or Configure Fixed Media Profiles to
Get Guaranteed Number of Media Profiles for Video Source
Configuration

17.01 Nov 23, 2016 | The following test case was added in the scope of #1174

MEDIA2-9-1-2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ

17.01 Nov 27, 2016 | The Annexes format was changed according to comment in #1166.
17.01 Nov 27, 2016 | The test MEDIA2-2-4-2 was apdated according comments in #1180:

Typos were fixed.

The first not enabled will be used for first Set.
17.01 Nov 27, 2016 | The following were updated according #1215:

Command under test were updated.

Step 8 was removed from MEDIA2-2-3-1.

Step 5.1 was updated with description in MEDIA2-2-3-3.
17.01 Nov 27, 2016 | The format was updated according #1238.

17.01 Nov 27, 2016 | Test Structures and test IDs were updated according #1265.

17.01 Nov 27, 2016 | The following annexes were updated in the scope of #1260:

A.4 OSDConfigurationOptions and OSDConfiguration mapping
17.01 Dec 07, 2016 | Annex A.27 were renamed.

Annex A.27 Procedure Purpose were updated.

Annex A.27 Procedure was fixed to Create Media Profile if
maxProfiles was not reached.

17.01 Dec 08, 2016 | Fixed typos and link according description in #1162.

Fixed typos and link according description in #1166.
Fixed typos and link according description in #1161.
Fixed typos and link according description in #1170.
Fixed typos and link according description in #1180.

Fixed responses according in #1178.

6 www.onvif.org

OnviF’ | wsmanggres

17.01 Dec 12, 2016 | MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION was
updated:

subscribtion creation were moved to the loop to prevent receiveing
messages after Annex A.1.

17.01 Jan 09, 2017 | MEDIA2-2-2-5 was updated according #1294 and #1154

Step 5.9 was updated.

Step 5.3 was updated.

Some typos was fixed according #1154.

Step 5.9 was updated.

MEDIA2-4-1-1 was updated according #1174:

ONVIF Core Specification Coverage and Pre-Requisite were
updated.

17.01 Jan 18, 2017 | The test MEDIA2-2-3-4 VIDEO ENCODER CONFIGURATIONS -
ALL SUPPORTED VIDEO ENCODER CONFIGURATIONS was
apdated according to #1293:

GovLength parameter in SetVideoEncoderConfiguration request
was updated.

17.06 Jan 26, 2017 | The following test cases were added according to #1296:
MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES

MEDIA2-7-1-2 GET SERVICES AND GET MEDIA2 SERVICE
CAPABILITIES CONSISTENCY

17.06 Jan 30, 2017 | MEDIA2-3-4-4 MODIFY ALL SUPPORTED AUDIO DECODER
CONFIGURATIONS test case was updated according to #1295.

17.06 Feb 09, 2017 | MEDIA2-1-1-1 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING test case was updated according to #1284.

MEDIA2-2-3-5 VIDEO ENCODER CONFIGURATION OPTIONS test
case was added according to #1273.

17.06 Feb 20, 2017 | MEDIA2-2-3-1 VIDEO ENCODER CONFIGURATION test case was
updated according to #1215.

17.06 Mar 03, 2017 | MEDIA2-1-1-1 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING test case was updated according to #1284 and #1345.

17.06 Mar 06, 2017 | MEDIA2-4-1-2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ test case was updated according to #1307.

17.06 Mar 22, 2017 | MEDIA2-1-1-4 GET PROFILES test case was added according to
#1333.

17.06 Mar 24, 2017 | Media2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS test case was updated according to #1312.

17.06 Mar 31, 2017 | MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES test case was
updated according to #1288.

The following test cases were updated according to #1367:

MEDIA2-3-2-1 G.711 AUDIO ENCODER CONFIGURATION

www.onvif.org 7

Onvie

MEDIA2-3-2-2 AAC AUDIO ENCODER CONFIGURATION

17.06

Apr 03, 2017

MEDIA2-1-1-5 CREATE MEDIA PROFILE
CONFIGURATIONS test case was added according to #1344.

WITH

17.06

Apr 24, 2017

MEDIA2-2-1-1 VIDEO ENCODER INSTANCES test case was
updated according to #1156.

Annex A.28 was added.

17.06

May 24, 2017

MEDIA2-2-3-1 VIDEO ENCODER CONFIGURATION test case was
updated according to #1363.

17.12

Jul 13, 2017

MEDIA2-6-1-5 GET OSDS test case was added according to #1347.

17.12

Jul 14, 2017

MEDIA2-1-1-6 REMOVE ALL CONFIGURATIONS FROM MEDIA
PROFILE test case was added according to #1404.

17.12

Sept 28, 2017

MEDIA2-2-2-7 PROFILES AND VIDEO SOURCE
CONFIGURATION OPTIONS CONSISTENCY test case was added
according to #1484.

MEDIA2-2-3-1 VIDEO ENCODER CONFIGURATION test case was
changed according to #1485.

The following test cases and annexes were added in the scope of
#1488:

MEDIA2-3-2-3 GET AUDIO ENCODER CONFIGURATION
OPTIONS

MEDIA2-3-2-4 AUDIO ENCODER CONFIGURATIONS AND AUDIO
ENCODER CONFIGURATION OPTIONS CONSISTENCY

17.12

Oct 24, 2017

MEDIA2-1-1-7 FIXED MEDIA PROFILE CONFIGURATION test
case was added according to #1472.

17.12

Oct 31, 2017

The following test case waere added according to #1500:
MEDIA2-6-1-6 GET OSD OPTIONS

MEDIA2-6-1-7 OSD CONFIGURATIONS AND OSD OPTIONS
CONSISTENCY

17.12

Nov 03, 2017

The following test case waere added according to #1487:

MEDIA2-4-1-2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ

17.12

Nov 24, 2017

MEDIA2-6-1-6 GET OSD OPTIONS updated according to #1534

17.12

Nov 27, 2017

MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES
according to #1522

updated

17.12

Nov 28, 2017

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION was
updated according to #1499

Annex A.1 Create Empty Profile was updated according to #1499

MEDIA2-6-1-7 OSD CONFIGURATIONS AND OSD OPTIONS
CONSISTENCY was updated according to #1500

17.12

Nov 29, 2017

Media Configuration Test Cases\Video Configuration\General
section was removed.

Annex A.28 Remove all non-fixed Media Profiles and remove all
configurations from fixed Media Profiles was removed.

www.onvif.org

Standardizing IP Connectivity
for Physical Security

OnviF’ | wsmanggres

Annex A.27 Create New Media Profiles to Get Guaranted Number
of Media Profiles for Video Source Configuration

17.12 Dec 01, 2017 | MEDIA2-8-1-1 MODIFY ALL SUPPORTED METADATA
CONFIGURATIONS was added according to #1486.

18.06 Jan 16, 2018 | MEDIA2-6-1-4 SET OSD CONFIGURATION TEXT OVERLAY was
changed according to #1519.

18.06 Jan 17, 2018 | MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES was changed
according to #1521.

18.06 Jan 23, 2018 | The following test cases were updated according to #1483:
MEDIA2-6-1-6 GET OSD OPTIONS

MEDIA2-6-1-2 CREATE OSD CONFIGURATION FOR IMAGE
OVERLAY

MEDIA2-6-1-3 SET OSD CONFIGURATION IMAGE OVERLAY
The following annex was added according to #1483:

Annex A.28 OSD Picture File Parameters

18.06 Jan 24, 2018 | The following test cases were updated according to #1546:
MEDIA2-6-1-1 CREATE OSD CONFIGURATION FOR TEXT

OVERLAY
MEDIA2-6-1-2 CREATE OSD CONFIGURATION FOR IMAGE
OVERLAY

18.06 Jan 24, 2018 | MEDIA2-6-1-6 GET OSD OPTIONS was updated according to
#1511,

18.06 Jan 24, 2018 | The following test cases were updated according to #1575:

MEDIA2-8-1-1 MODIFY ALL SUPPORTED METADATA
CONFIGURATIONS (note and steps 5.3 and 5.9 were updated)

18.06 Jan 24, 2018 | The following test cases were updated according to #1560:

MEDIA2-2-3-4 VIDEO ENCODER CONFIGURATIONS - ALL
SUPPORTED VIDEO ENCODER CONFIGURATIONS (step 5.3.12
was removed, step 7 was added)

18.06 Mar 20, 2018 | The following test cases were updated according to #1581:
MEDIA2-6-1-6 GET OSD OPTIONS (step 4.3 and step 5 added)

MEDIA2-6-1-7 OSD CONFIGURATIONS AND OSD OPTIONS
CONSISTENCY (step 4.6.2 added)

18.06 Mar 21, 2018 | The following test cases were updated according to #1547:

Annex A.30 Device Configuration to Create OSD with Required
Type added

Annex A.29 Delete OSD added

MEDIA2-6-1-1 CREATE OSD CONFIGURATION FOR TEXT
OVERLAY (Pre-Requisite about maximum number of OSD
removed, step 4.6, step 4.7, step 4.15, step 4.16, and step 4.25
added)

www.onvif.org 9

Onvie

MEDIA2-6-1-2 CREATE OSD CONFIGURATION FOR IMAGE
OVERLAY (Pre-Requisite about maximum number of OSD
removed, step 4.6, and step 4.24 added)

MEDIA2-6-1-3 SET OSD CONFIGURATION IMAGE OVERLAY
(Pre-Requisite about maximum number of OSD removed, step 4.7,
and step 4.19 added)

MEDIA2-6-1-4 SET OSD CONFIGURATION TEXT OVERLAY (Pre-
Requisite about maximum number of OSD removed, step 4.7, and
step 4.18 added)

18.06

Apr 09, 2018

Annex A.30 Device Configuration to Create OSD with Required
Type updated according to #1608

Annex A.31 Delete All Text OSDs added according to #1608

18.06

Apr 18, 2018

MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES
according to #1595 (step 16 added)

updated

18.06

Apr 24, 2018

MEDIA2-2-3-4 SET ALL SUPPORTED VIDEO ENCODER
CONFIGURATIONS updated according to #1617

18.06

May 07, 2018

The following were updated according to #1620:

MEDIA2-5-1-2 VIDEO ENCODER
SOURCE (added)

INSTANCES PER VIDEO

18.06

Jun 21, 2018

Reformatting document using new template

18.12

Aug 07, 2018

MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES
according to #1691

updated

18.06
SR1

Sep 19, 2018

The following were updated according to #1641:

MEDIA2-2-3-4 SET ALL SUPPORTED VIDEO ENCODER
CONFIGURATIONS (note was updated to remove Quality,
RateControl.FrameRateLimit, and RateControl.BitrateLimit from
comparison)

18.12

Dec 07, 2018

The following were updated according to #1762:

DYNAMIC MEDIA PROFILE CONFIGURATION FOR PTZ
(PTZConfiguration.Name value in 6.3.6 step was updated)

18.12

Dec 21, 2018

Switching Hub description in 'Network Configuration for DUT' section
was updated according to #1737

19.06

Jan 10, 2019

The following were updated according to #1762:

DYNAMIC MEDIA PROFILE CONFIGURATION FOR PTZ (step 5
added, step 7.3.3 updated)

19.06

Apr 10, 2019

The following were updated according to #1764

MEDIA2-3-2-2 AAC AUDIO ENCODER CONFIGURATION (step 5.3
and step 5.3.1 updated)

19.06

Apr 26, 2019

The following were updated according to #1813:

MEDIA2-4-1-2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ (steps 7.3.6 - 7.3.11 added)

19.12

Sep 23, 2019

The following were updated according to #1926:

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION
(steps 7- 8 replaced with steps 6.34-6.57)

10

www.onvif.org

Standardizing IP Connectivity
for Physical Security

OnviF’ | wsmanggres

19.12 Sep 25, 2019 | The following were updated according to #1913:
MEDIA2-1-1-4 GET PROFILES (steps 16 and 17 added)
19.12 Oct 08, 2019 | The following were updated according to #1894

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION
(steps with metadata moved under Metadata feature, see step 6.34)

MEDIA2-8-1-1 MODIFY ALL SUPPORTED METADATA
CONFIGURATIONS (Metadata feature added into Pre-Requisite)

19.12 Oct 09, 2019 | The following were done according to #1913:

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION
(step 7 added)

MEDIA2-9-1-1 GET ANALYTICS CONFIGURATIONS (test case
added)

MEDIA2-9-1-2 PROFILES AND ANALYTICS CONFIGURATIONS
CONSISTENCY (test case added)

MEDIA2-9-1-3 GET ANALYTICS CONFIGURATIONS — INVALID
TOKEN (test case added)

A.32 Get Analytics Configurations List (annex case added)

MEDIA2-8-1-2 GET METADATA CONFIGURATIONS (test case
added)

MEDIA2-8-1-3 PROFILES AND METADATA CONFIGURATIONS
CONSISTENCY (test case added)

MEDIA2-8-1-4 GET METADATA CONFIGURATIONS — INVALID
TOKEN (test case added)

19.12 Oct 11,2019 | The following were done according to #1957:

MEDIA2-3-2-3 GET AUDIO ENCODER CONFIGURATION
OPTIONS(Type parameter in step 7 updated, step 9 updated)

20.06 Mar 03, 2020 | Minor changes according to #1913:

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION
(invalid step ID fixed)

MEDIA2-1-1-4 GET PROFILES (Specification coverage section
updated)

20.06 May 12, 2020 | The following were updated according to #1901 and #1999:

MEDIA2-1-1-2 CREATE MEDIA PROFILE WITH PRE-DEFINED
CONFIGURATION (steps 5, 8, 17, 18 updated)

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION (all
steps with calling of A.12, A.14, and A.13 updated)

MEDIA2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS (steps 4, 5.5, 5.11, 6 updated)

MEDIA2-2-3-4 SET ALL SUPPORTED VIDEO ENCODER
CONFIGURATIONS (steps 4, 5.3.3, 5.3.9, 7 updated)

MEDIA2-3-1-5 MODIFY ALL SUPPORTED AUDIO SOURCE
CONFIGURATIONS (steps 4, 5.5, 6 updated)

www.onvif.org 11

OnviF: | sxeeegre

MEDIA2-3-2-1 G.711 AUDIO ENCODER CONFIGURATION (steps
4,5.3.4, 5.3.11, 6 updated)

MEDIA2-3-2-2 AAC AUDIO ENCODER CONFIGURATION (steps 4,
5.3.4, 5.3.11, 6 updated)

MEDIA2-3-3-5 MODIFY ALL SUPPORTED AUDIO OUTPUT
CONFIGURATIONS (steps 4, 5.5, 5.11, 6 updated)

MEDIA2-4-1-2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ (steps 6, 7.3.3, 7.3.14, 7.3.27, 9 updated)

MEDIA2-8-1-1 MODIFY ALL SUPPORTED METADATA
CONFIGURATIONS (steps 4, 5.5, 5.11, 6 updated)

20.12 Jul 30, 2020 | The following were updated according to #2072:

MEDIA2-1-1-5 CREATE MEDIA PROFILE WITH
CONFIGURATIONS (separated CreateProfile for each
configuration)

20.12 Sep 28, 2020 | The following were updated according to #2088:

MEDIA2-2-3-1-v17.12 VIDEO ENCODER CONFIGURATION (Video
feature was added in Pre-Requisite)

MEDIA2-2-3-2 VIDEO ENCODER CONFIGURATIONS AND VIDEO
ENCODER CONFIGURATION OPTIONS CONSISTENCY (Video
feature was added in Pre-Requisite)

MEDIA2-2-3-3 PROFILES AND VIDEO ENCODER
CONFIGURATION OPTIONS CONSISTENCY (Video feature was
added in Pre-Requisite)

MEDIA2-2-3-4-v20.06 SET ALL SUPPORTED VIDEO ENCODER
CONFIGURATIONS (Video feature was added in Pre-Requisite)

MEDIA2-2-3-5-v17.06 VIDEO ENCODER CONFIGURATION
OPTIONS VALIDATION (Video feature was added in Pre-Requisite)

MEDIA2-5-1-2 VIDEO ENCODER INSTANCES PER VIDEO
SOURCE (Video feature was added in Pre-Requisite)

MEDIA2-1-1-3 DYNAMIC MEDIA PROFILE CONFIGURATION
(Step 6.10 was changed: steps for Video Encoder were moved
under condition that Video is supported)

20.12 Oct 01, 2020 | The following were updated according to #2099:
MEDIA2-5-1-1 SNAPSHOT URI (step 4 added)
20.12 Nov 09, 2020 | The following test case was added according to #2025:

MEDIA2-1-1-8 READY TO USE MEDIA PROFILE FOR METADATA
STREAMING

20.12 Dec 17, 2020 | The following test case was added according to #2120:

MEDIA2-1-1-9 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING (PROFILE M)

21.06 Apr 09, 2021 | The following annex was updated according to #2124:

A.23 Waiting for Reboot (condition with Discovery feature supporting
added)

12 www.onvif.org

OnviF’ | wsmanggres

21.06 May 27, 2021 | The following test case was updated according to #2216:

MEDIA2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS (step 5.3 and 5.9 modified to skip change of
Rotate if Reboot=true)

21.12 Aug 31, 2021 | The following test case was updated according to #2216:

MEDIA2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS (step 7 added)

21.12 Oct 07, 2021 | The following test cases and annexes were added in the scope of
#2222:

MEDIA2-10-1-1 CREATE MASKS
MEDIA2-10-1-2 GET MASKS
MEDIA2-10-1-3 SET MASKS
MEDIA2-10-1-4 GET MASK OPTIONS

MEDIA2-10-1-5 MASK CONFIGURATIONS AND MASK OPTIONS
CONSISTENCY

A.34 Device Configuration For Create Mask
A.35 Delete Mask
A.36 Create Mask

21.12 Oct 13, 2021 | The following test cases and annexes were added in the scope of
#2222:

MEDIA2-10-1-6 SINGLE COLOR ONLY PARAMETER

A.37 Remove all Masks from Video Source Configuration

22.12 Oct 18, 2022 | The following test cases were updated in the scope of #33:
MEDIA2-10-1-2 GET MASKS (step 3 was added)
The following annex was added in the scope of #33:

Annex A.38 Device Configuration For Get Masks Test Case

22.12 Nov 15, 2022 | The following test cases were updated in the scope of #33:

MEDIA2-10-1-1 CREATE MASKS (Note about comparison at step
8 was added, editorial changes)

MEDIA2-10-1-3 CREATE MASKS (Note about comparison at step
10 was added, editorial changes)

23.06 Mar 19, 2023 | MEDIA2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS updated (according to #81):

Steps 7.3.1, 7.3.2, 7.3.3, 7.3.4 added.

Step 7.3.5 with SetVideoSourceConfiguration updated to choose
rotate mode value different from current mode and to choose degree
different from 0.

2412 Oct 21, 2024 | Video Source Configuration feature was added into Pre-Requisite of
the following test cases in the scope of #242 ticket:

www.onvif.org 13

O nVI F ® | Standardizing IP Connectivity
for Physical Security

MEDIA2-2-2-1 GET VIDEO SOURCE CONFIGURATION OPTIONS

MEDIA2-2-2-2 GET VIDEO SOURCE CONFIGURATIONS

MEDIA2-2-2-3 VIDEO SOURCE CONFIGURATIONS AND VIDEO
SOURCE CONFIGURATION OPTIONS CONSISTENCY

MEDIA2-2-2-4 PROFILES AND VIDEO SOURCE
CONFIGURATIONS CONSISTENCY

MEDIA2-2-2-5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS

MEDIA2-2-2-6 GET VIDEO SOURCE CONFIGURATIONS -
INVALID TOKEN

MEDIA2-2-2-7 PROFILES AND VIDEO SOURCE
CONFIGURATION OPTIONS CONSISTENCY

MEDIA2-1-1-2 CREATE MEDIA PROFILE WITH PRE-DEFINED
CONFIGURATION

2412 Nov 4, 2024 | Validation of ViewMode value added according of #269 ticket:

MEDIA2-2-2-2 GET VIDEO SOURCE CONFIGURATIONS (step 7.1
added)

25.06 Feb 12, 2025 | Validation of Fisheye ViewMode value added according of #220
ticket:

MEDIA2-2-2-2 GET VIDEO SOURCE CONFIGURATIONS (step
7.1.2 added)

25.06 Mar 24, 2025 | Audio Clip test cases added according to #291 ticket:

MEDIA2-11-1-1 GET AUDIO CLIPS

MEDIA2-11-1-2 ADD AUDIO CLIP

MEDIA2-11-1-3 ADD AUDIO CLIP - WITH TOKEN IN REQUEST
MEDIA2-11-1-4 SET AUDIO CLIP

MEDIA2-11-2-1 PLAY AUDIO CLIP - WAV with LPCM
MEDIA2-11-2-2 PLAY AUDIO CLIP - OGG-Opus

MEDIA2-11-2-3 PLAY AUDIO CLIP - STOP PLAYING

MEDIA2-11-2-4 PLAY AUDIO CLIP - NEW PARAMETERS IN PLAY
REQUEST

MEDIA2-11-2-5 PLAY SCHEDULED AUDIO CLIP

MEDIA2-12-1-1 REALTIME PULLPOINT SUBSCRIPTION — AUDIO
CLIP STATE EVENT

The following test case was updated according to #291 ticket:

MEDIA2-7-1-1 MEDIA2 SERVICE CAPABILITIES (step 19 was
added to check AudioClip capabilities)

MEDIA2-7-1-2 GET SERVICES AND GET MEDIA2 SERVICE
CAPABILITIES CONSISTENCY (Audio Clip Capabilities added into
Note)

14 www.onvif.org

O n V I F ® Standardizing IP Connectivity
for Physical Security

25.12

Aug 10, 2025

The following test and annexes were updated according #334:

MEDIA2-1-1-10 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING (H.264) (new)

25.12

Oct 14, 2025

The following test and annexes were updated according #334:

MEDIA2-14-1-1 GET AND SET WEBRTC CONFIGURATIONS
(new)

MEDIA2-14-1-2 SET WEBRTC CONFIGURATIONS FAULTS (new)

25.12

Oct 20, 2025

The following test and annexes were added according #286:
MEDIA2-13-1-1 SET EQ PRESETS

MEDIA2-13-1-2 SET EQ PRESETS - SCHEDULE
MEDIA2-13-1-3 SET EQ PRESETS - FREQUENCY DECIBEL

Annex A.49 Choose Audio Output Configuration With EQ Presets
Supporting

Annex A.50 Choose Audio Output Configuration With EQ Presets
Scheduling Supporting

Annex A.51 Choose Audio Output Configuration with EQ Preset with
Frequency Decibel Management Supporting

www.onvif.org 15

ONVIE® | imsgres

Table of Contents

1 INtroduction ... ————————————— 24
1.1 S0P e 24

1.2 Media CoNfIGUIationooiiiiiii e 25

2 Normative referencesccoocoiiiieei e ———— 27
3 Terms and Definitionscccccciiiiiiii e ——— 29
3.1 CONVENTIONS ...ttt e e e e e e e e e r e e e e s 29
3.2 D= o1 o] o PSSR 29
3.3 ADDIEVIALIONSeeiiiiiiiii e 29
4 L= O Y TN 30
41 TeSt SOtUD e 30
411 Network Configuration for DUTccoooiiiiiiiiiiiieee e 30

4.2 PrereqUISItESooooiiiii 31

4.3 TESE POlICY e 31
4.31 Media ConfIQUuIrationeueuueeuiiiiiiiiiiiiiiiie bbb 31

5 Media Configuration Test Casescccvvvmmrmmmiiiiniiiiisrr s 33
5.1 Media Profilecoooiiiiii e 33
5.1.1 READY TO USE MEDIA PROFILE FOR VIDEO STREAMING 33

5.1.2 CREATE MEDIA PROFILE WITH PRE-DEFINED CONFIGURATION 34

5.1.3 DYNAMIC MEDIA PROFILE CONFIGURATIONccccciiiiiiieeiieeciee e 37
514 GET PROFILES ..ot 57

5.1.5 CREATE MEDIA PROFILE WITH CONFIGURATIONScccceeoiiiiiieaiieenne 61

5.1.6 REMOVE ALL CONFIGURATIONS FROM MEDIA PROFILEcc........ 65

5.1.7 FIXED MEDIA PROFILE CONFIGURATIONccccceiiiiiiiiiiaiiie e 66

5.1.8 READY TO USE MEDIA PROFILE FOR METADATA STREAMING 68

5.1.9 READY TO USE MEDIA PROFILE FOR VIDEO STREAMING (PROFILE

Y USROS 69
5.1.10 READY TO USE MEDIA PROFILE FOR VIDEO STREAMING (H.264) 71
5.2 Video Configurationcoooiiiiiiiii e e 72
5.2.1 Video Source Configurationooooieiiiiiiee i 72
5211 GET VIDEO SOURCE CONFIGURATION OPTIONScccccevvenne 72

16 www.onvif.org

OnviF | empnggre

5212 GET VIDEO SOURCE CONFIGURATIONSccccoeiiiiiiieiieeeeee 74
5.2.1.3 VIDEO SOURCE CONFIGURATIONS AND VIDEO SOURCE
CONFIGURATION OPTIONS CONSISTENCYcooiiiiiiiiiiiieeeeee e 76

5.2.1.4 PROFILES AND VIDEO SOURCE CONFIGURATIONS
CONSISTENCY ..ot 79
5.2.1.5 MODIFY ALL SUPPORTED VIDEO SOURCE

CONFIGURATIONS ...t 81
5.2.1.6 GET VIDEO SOURCE CONFIGURATIONS — INVALID TOKEN 88
5.2.1.7 PROFILES AND VIDEO SOURCE CONFIGURATION OPTIONS

CONSISTENCY ...ttt ettt ettt e e anae e 89
5.2.2 Video Encoder Configurationcccccooooiuumummmmmnniiiiiieiieeeeeeeenenenenenees 92
5.22.1 VIDEO ENCODER CONFIGURATIONccocoiiiiiiiiiiieiiee e 92
5.2.2.2 VIDEO ENCODER CONFIGURATIONS AND VIDEO ENCODER
CONFIGURATION OPTIONS CONSISTENCY ...cccvviiiiiieiiieeiiee e 94

5.2.2.3 PROFILES AND VIDEO ENCODER CONFIGURATION OPTIONS

CONSISTENCY ..ottt ettt e et e e e e e 95
5.2.24 SET ALL SUPPORTED VIDEO ENCODER CONFIGURATIONS 96
5.22.5 VIDEO ENCODER CONFIGURATION OPTIONScccceeviieennnn. 101
5.2.3 VIdBO SOUICEooiiiiiiiie ettt 103
5.2.3.1 GET VIDEO SOURCE MODESccoiiiiiiieiiee e 103
5.2.3.2 SET VIDEO SOURCE MODEScccotiiiiiieiieeniee e 105
5.3 AUdio CoNFIQUIALION ... 107
5.3.1 Audio Source Configurationueeeeueeiiiiiiiiriieririeireeeeee———.. 107
5.3.1.1 GET AUDIO SOURCE CONFIGURATION OPTIONSccccen.e. 107
5.3.1.2 GET AUDIO SOURCE CONFIGURATIONSccccooimiiiriniieein 109
5.3.1.3 AUDIO SOURCE CONFIGURATIONS AND AUDIO SOURCE
CONFIGURATION OPTIONS CONSISTENCYccocoiiiiiieiieeiee e 111

5.3.1.4 PROFILES AND AUDIO SOURCE CONFIGURATIONS
CONSISTENCY ..ot 112
5.3.1.5 MODIFY ALL SUPPORTED AUDIO SOURCE

CONFIGURATIONS ...t 113

www.onvif.org 17

OnviF | empnggre

5.3.1.6 GET AUDIO SOURCE CONFIGURATIONS — INVALID TOKEN 116
5.3.2 Audio Encoder Configurationccccccoooiiii e 117
5.3.21 G.711 AUDIO ENCODER CONFIGURATIONcccoviiiiieiiiiiienienns 117
5.3.2.2 AAC AUDIO ENCODER CONFIGURATIONccccoviiieiiiieiiieenee. 122
5.3.2.3 GET AUDIO ENCODER CONFIGURATION OPTIONS 126
5.3.2.4 AUDIO ENCODER CONFIGURATIONS AND AUDIO ENCODER
CONFIGURATION OPTIONS CONSISTENCYcccoiiiiiieniieiiie e 128
5.3.3 Audio Output Configurationceeeiiiiiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeeees 129
5.3.3.1 GET AUDIO OUTPUT CONFIGURATION OPTIONSccccouenee. 129
5.3.3.2 GET AUDIO OUTPUT CONFIGURATIONScooiiiiiiieeiiieeciene 131
5.3.3.3 AUDIO OUTPUT CONFIGURATIONS AND AUDIO OUTPUT
CONFIGURATION OPTIONS CONSISTENCY ...cccoviiiiiiiiiiieeiiee e 133
5.3.3.4 PROFILES AND AUDIO OUTPUT CONFIGURATIONS
CONSISTENCY ..ottt e s e nnbee e 135
5.3.3.5 MODIFY ALL SUPPORTED AUDIO OUTPUT
CONFIGURATIONS ...ttt 136
5.3.3.6 GET AUDIO OUTPUT CONFIGURATIONS — INVALID TOKEN 140
5.3.4 Audio Decoder Configurationccccccoeiiiiiiii 141
5.34.1 GET AUDIO DECODER CONFIGURATION OPTIONS 141
5.34.2 GET AUDIO DECODER CONFIGURATIONSccccoiiieiiiieiinene 143
5.3.4.3 PROFILES AND AUDIO DECODER CONFIGURATIONS
CONSISTENCY ..ttt et e e s e snnee e 145
5.3.4.4 MODIFY ALL SUPPORTED AUDIO DECODER
CONFIGURATIONS ...ttt 146
5.3.4.5 GET AUDIO DECODER CONFIGURATIONS — INVALID TOKEN ... 148
54 PTZ Configurationcoooiiiiiii 149
54.1 READY TO USE MEDIA PROFILE FOR PTZccccoiiiiiiiiiciiceeice 149
54.2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR PTZcccccevveenen. 150
5.5 Media Streamingooovviiiiii 159
551 SNAPSHOT URI .ttt 159
5.5.2 VIDEO ENCODER INSTANCES PER VIDEO SOURCEcccccevrnnnnene. 160

18 www.onvif.org

OnviF | empnggre

5.6 OSD CoNfIQUrationccooviiiiiiiiiie e 162
5.6.1 CREATE OSD CONFIGURATION FOR TEXT OVERLAYccccceviveennnn. 162
5.6.2 CREATE OSD CONFIGURATION FOR IMAGE OVERLAYccccceernennn. 165
5.6.3 SET OSD CONFIGURATION IMAGE OVERLAYccccciiiiiiiiieeiieenieens 169
5.6.4 SET OSD CONFIGURATION TEXT OVERLAYccociiiiiiiiiienieciee e 173
B5.8.5 GET OSDS ...ttt 176
56.6 GET OSD OPTIONS ..ottt 177
5.6.7 OSD CONFIGURATIONS AND OSD OPTIONS CONSISTENCY 179

5.7 07T oF=1 o] 1111 =T SO 185
5.7.1 MEDIA2 SERVICE CAPABILITIEScooiiiiiiiiieiie e 185
5.7.2 GET SERVICES AND GET MEDIA2 SERVICE CAPABILITIES
(010N IS IS = [0 SR 187

5.8 Metadata Configurationccooeoeoiiiiii e 189
5.8.1 Metadata Configuration ... 189

5.8.1.1 MODIFY ALL SUPPORTED METADATA CONFIGURATIONS 189
5.8.1.2 GET METADATA CONFIGURATIONScccoiiiiiiiiiie e 194

5.8.1.3 PROFILES AND METADATA CONFIGURATIONS
CONSISTENCY ittt e e 196

5.8.1.4 GET METADATA CONFIGURATIONS — INVALID TOKEN 198

59 Analytics Configurationcoooi i 199
5.9.1 GET ANALYTICS CONFIGURATIONScooiiiiiiiieniieiieesie e 199
5.9.2 PROFILES AND ANALYTICS CONFIGURATIONS CONSISTENCY 201
5.9.3 GET ANALYTICS CONFIGURATIONS — INVALID TOKENcccevvrennnne 203

5.10 Masks Configurationooiiiiiiiiiiiiiiiiiieee e 204

5.10.1 CREATE MASKS ...ttt 204

5.10.2 GET MASKS ..ttt 206

5.10.3 SET MASKS ...ttt 209
5.10.4 GET MASK OPTIONS ...t 212
5.10.5 MASK CONFIGURATIONS AND MASK OPTIONS CONSISTENCY 213
5.10.6 SINGLE COLOR ONLY PARAMETERccoooiiiiiiiiiieiiiee e 216

5.11 AUGIO ClIP ittt 220

www.onvif.org 19

ONVIE® | imsgres

5.11.1 Audio Clip Configurationceeeiiiiiiiiiiiieiiieieieeeeeee e 220
51111 GET AUDIO CLIPS ...t 220
511.1.2 ADD AUDIO CLIP ...ttt 223
5.11.1.3 ADD AUDIO CLIP - WITH TOKEN IN REQUESTccccveernnnne 226
511.1.4 SET AUDIO CLIP ...ooiiiiiiiiiieee e 228
511.2 Audio Clip Playingcooueiiiiiiiiie e 231
5.11.2.1 PLAY AUDIO CLIP - WAV with LPCMccooiiiiiiiieiieieeee e 231
5.11.22 PLAY AUDIO CLIP - OGG-OPUScoeiueieiiiieiiieaniieeeniieeeniieeenieeeens 235
5.11.2.3 PLAY AUDIO CLIP - STOP PLAYINGcccceiiiiiiieniiiiieneeeieeee 239
5.11.2.4 PLAY AUDIO CLIP - NEW PARAMETERS IN PLAY REQUEST 243
5.11.2.5 PLAY SCHEDULED AUDIO CLIPcooiiiiiiiiieiiieee e 246
5.12 BV NS . 250
5.12.1 REALTIME PULLPOINT SUBSCRIPTION — AUDIO CLIP STATE
Y =N SRR 250
5.13 EQ Presetso 254
5131 SET EQ PRESETS ..ottt 254
5.13.2 SET EQ PRESETS - SCHEDULEcooooiiiiiiiiiiiieeceec e 256
5.13.3 SET EQ PRESETS - FREQUENCY DECIBELcccccviiiiiiiiieiieecenn 258
514 WebRTC Configurationccooeiiiiiiiii e 260
5.14.1 WebRTC Configurationcoooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 260
5.14.1.1 GET AND SET WEBRTC CONFIGURATIONScccccovvnvienieenn 260
5.14.1.2 SET WEBRTC CONFIGURATIONS FAULTScccoeiiiieiiieeiiieene 265
A Helper Procedures and Additional Notescocceeiimic i 268
A1 Delete Media Profile if Max Reachedccccoiiiiiiiii 268
A.2 Get Service Capabilitiesoooiiiiiiiiii e, 269
A.3 Get Video Source Configurations Listccccooiiiiiiiie 269
A.4 Create Pull Point SUbSCHptionoomiiiiiiiii e 270
A.5 Retrieve Profile Changed Event by PullPoint ... 271
A.6 Delete SUDSCHPLIONcoooie e 272
A7 NaME Parametersc.uviiiiiiiiiiiiie e 273
A.8 Create Empty Profile ... 273

20 www.onvif.org

OnviF | empnggre

A.9 Get Audio Source Configurations LiStooeeeiiii i, 275
A.10 Get Audio Output Configurations List ..., 275
AN Delete Media Profile ... 276
A.12 Configure Media profile with Video Source Configurationccoeeeeeieeinn. 277
AA13 VIeW MOAES LISto 278
A.14 Retrieve Configuration Changed Event by PullPointcccccciiiiiiiii 279
A.15 Waiting for REDOOLcovviiiiiiieieeeee 280

A.16 VideoEncoderConfigurationOptions and VideoEncoderConfiguration mapping ... 281

A.17 Get Video Encoder Configurations Listcccoeeeiiiiii 281
A8 Get VIideo SoUrCes LiStcoiiiiiiiiiiiieiiiii e 282
A.19 Configure Media profile with Audio Source Configurationccccoeeeeee. 283
A.20 Get Audio Encoder Configurations List ... 284
A.21 Configure Media profile with Audio Output Configurationccccccvvvrirnnennnnns 285
A.22 Get Audio Decoder Configurations Listccooiiioiiiiiiiii e 287

A.23 Configure Media profile with Audio Output Configuration and Audio Decoder
(7] 1 Te 18] =1 (1] o SRR 287

A.24 Configure Media profile with Video Source Configuration and Video Encoder

(7] 1 Te 18] =1 (1] o TR 290

A.25 Device Configuration to Create OSD with Required Typeoooeeveeeeieeennnennnn. 292
A26 DEIEtE OSDeeiiiiiiiiiie e 294
A27 Delete All TEXE OSDSccoiiiiiiiiiiiie e 294
A.28 OSDConfigurationOptions and OSDConfiguration mappingcccccceveeeveeeeenene. 295

A.29 OSD Picture File Parameterscoooiiiiiiiiiic e 298
A.30 Get Metadata Configurations List ... 299
A.31 Get Analytics Configurations List ... 299
A.32 Device Configuration For Create Maskccccccvviiiiiiiiiiii 300
A.33 Delete MaSKoeeeiiiieee e 302
A.34 Device Configuration For Get Masks Test Casecccccceeiiieeeiiieiiicee e, 302
A.35 Create MasKooo e 305
A.36 Remove all Masks from Video Source Configurationeeeeviiiiiiiiiiieiennnns 306
A.37 Get Audio OULPULS LiStccooiiiiiiiii e 307

www.onvif.org 21

OnviF | empnggre

A.38 Get schedules information liStcoooiiiiiiii e 308
A.39 Prepare Free Space for Audio Clip addingcccoeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 309
A.40 Delete AUAIO CHP ..ennieeeeee et 310
A.41 Retrieve Output Token and Corresponding Output Level Range 311

A.42 Get AUIO ClIPS LISt ..ot 312
A43 Add and Upload AUdIO ClP ...ccceeieiiiieiiiieiiee et 312
A.44 Retrieve Changed Audio Clip Event by PullPointceuvviiiiiiiiiiiiiiniiiiiiinnnn. 314
A.45 Create SChEAUIEcooiiiii e 315
A.46 Get service capabilities (Schedule)coovvviiiiiiiiiii e 316
A.47 Generate iCalendar value for Scheduleoccoiiiiiiii e, 317
A48 Generate UID value for iCalendarccooiiiiiiiiiiiie e 318
A.49 Choose Audio Output Configuration With EQ Presets Supporting 318

A.50 Choose Audio Output Configuration With EQ Presets Scheduling Supporting 320

A.51 Choose Audio Output Configuration with EQ Preset with Frequency Decibel
Management SUPPOITING ...coooeiiei e 322
A.52 Get service capabilities for Advanced Security serviceccccoeeeeeiiiiiiieeeeeeeen. 324

A.53 Create a certification path validation policy for authentication server

CONFIGUIAtION ..o 325

A54 Provide CA certificateoooiiiiiiiie e 327
A.55 Signature Algorithm Selection ... 328
A.56 Generate @ KeY Pail ..cccceeeeeieiei e 329
A.57 Determine key pair generation paramscceoeeeiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeee 330
A.58 Create a certification path validation policy with provided certificate identifier 332

A.59 Configure Authorization Server On Device and Start Itcccccviiiiiii 333

A.60 Make Sure That At Least One Authorization Server Configuration Could Be

(072721 (=T PP 336
A.61 Get Authorization Server Configurations Listcccccviiiviiiiiiiiiiiiiiiiiiiiiiiinnnns 337
A.62 Provide certificate signed by private key of other certificateccccccccci 338

A.63 Authorization Server Configuration Type And Authentication Method Selection .. 340
A.64 Create Key Pair and Receive Public Key ... 341
A.65 (07 1=T=) (Y= T) A o - | 342

22 www.onvif.org

O nVI F | Standardizing IP Connectivity
for Physical Security

A.66 Delete @ KEY Pail oo 344
A.67 Subject for a server certificate ..., 345
A.68 Find Media Profile for Streamingccovviviiiiiiiiie e 345

www.onvif.org 23

OnviF: | sxeeegre

1 Introduction

The goal of the ONVIF test specification set is to make it possible to realize fully interoperable
IP physical security implementation from different vendors. The set of ONVIF test specification
describes the test cases need to verify the [ONVIF Network Interface Specs] and [ONVIF
Conformance] requirements. In addition, the test cases are to be basic inputs for some Profile
specification requirements. It also describes the test framework, test setup, pre-requisites, test
policies needed for the execution of the described test cases.

This ONVIF Media2 Test Specification acts as a supplementary document to the [ONVIF Network
Interface Specs], illustrating test cases need to be executed and passed. And this specification acts
as an input document to the development of test tool, which will be used to test the ONVIF device
implementation conformance towards ONVIF standard. This test tool is referred as ONVIF Client
hereafter.

1.1 Scope

This ONVIF Media2 Test Specification defines and regulates the conformance testing procedure for
the ONVIF conformant devices. Conformance testing is meant to be functional black-box testing.
The objective of this specification is to provide test cases to test individual requirements of ONVIF
devices according to ONVIF Media2 Service, which is defined in [ONVIF Network Interface Specs].

The principal intended purposes are:

* Provide self-assessment tool for implementations.

» Provide comprehensive test suite coverage for [ONVIF Network Interface Specs].
This specification does not address the following:

* Product use cases and non-functional (performance and regression) testing.

+ SOAP Implementation Interoperability test i.e. Web Service Interoperability Basic Profile
version 2.0 (WS-I BP 2.0).

» Network protocol implementation Conformance test for HTTP, HTTPS, RTP and RTSP
protocol.

* Poor streaming performance test (audio/video distortions, missing audio/video frames,
incorrect lib synchronization etc.).

Wi-Fi Conformance test

The set of ONVIF Test Specification will not cover the complete set of requirements as defined in
[ONVIF Network Interface Specs]; instead it would cover subset of it. The scope of this specification

24 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

is to derive all the normative requirements of [ONVIF Network Interface Specs], which are related

to ONVIF Media2 Service and some of the optional requirements.

This ONVIF Media2 Test Specification covers ONVIF Media2 service, which is a functional block of
[ONVIF Network Interface Specs]. The following sections describe the brief overview of and scope
of each functional block.

1.2 Media Configuration

Media Configuration section covers the test cases needed for the verification of media2 service
features as mentioned in [ONVIF Network Interface Specs]. Media2 service is used to configure
the media configurations.

Briefly it covers the following things:
» Manage media profiles.
+ Manage configuration entities.
» Getting snapshot
» Manage OSD configurationd

The scope of this specification is to cover following configuration entities and Audio/Video media
formats:

» Configuration Entities:
+ Video source configuration
+ Audio source configuration
+ Video encoder configuration
* Audio encoder configuration
+ Video Codec:
« H.264
« H.265
* Audio Codec:
« G.711

+ AAC

www.onvif.org 25

O nVI F | Standardizing IP Connectivity
for Physical Security

+ OSD:
+ Text Overlay

* Image Overlay

26 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

2 Normative references

* [ONVIF Conformance] ONVIF Conformance Process Specification:
https://www.onvif.org/profiles/conformance/

» [ONVIF Profile Policy] ONVIF Profile Policy:
https://www.onvif.org/profiles/

* [ONVIF Network Interface Specs] ONVIF Network Interface Specification documents:
https://www.onvif.org/profiles/specifications/

* [ONVIF Core Specs] ONVIF Core Specification:
https://www.onvif.org/profiles/specifications/

* [ONVIF Media2 Spec] ONVIF Media 2 Specification:
https://www.onvif.org/profiles/specifications/

+ [ONVIF Base Test] ONVIF Base Device Test Specification:
https://www.onvif.org/profiles/conformance/device-test/

» [ISO/IEC Directives, Part 2] ISO/IEC Directives, Part 2, Annex H:
http://www.iso.org/directives

 [ISO 16484-5] ISO 16484-5:2014-09 Annex P:
https://www.iso.org/obp/ui/#liso:std:63753:en

* [SOAP 1.2, Part 1] W3C SOAP 1.2, Part 1, Messaging Framework:
http://www.w3.0org/TR/soap12-part1/

* [XML-Schema, Part 1] W3C XML Schema Part 1: Structures Second Edition:
http://www.w3.org/TR/xmIschema-1/

* [XML-Schema, Part 2] W3C XML Schema Part 2: Datatypes Second Edition:
http://www.w3.0org/TR/xmlschema-2/

* [WS-Security] "Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)",
OASIS Standard, February 2006.:

www.onvif.org 27

https://www.onvif.org/profiles/conformance/
https://www.onvif.org/profiles/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/specifications/
https://www.onvif.org/profiles/conformance/device-test/
http://www.iso.org/directives
https://www.iso.org/obp/ui/#!iso:std:63753:en
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

O nVI F ® | Standardizing IP Connectivity
for Physical Security

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-0s-
SOAPMessageSecurity.pdf

* [RFC 2396] "Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee, MIT/LCS,
R. Fielding, U.C. Irvine, L. Masinter, Xerox Corporation, August 1998:

https://www.ietf.org/rfc/rfc2396.txt

28 www.onvif.org

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.ietf.org/rfc/rfc2396.txt

OnviF | empnggre

3 Terms and Definitions

3.1 Conventions

The key words "shall", "shall not", "should", "should not", "may", "need not", "can", "cannot" in this
specification are to be interpreted as described in [ISO/IEC Directives Part 2].

3.2 Definitions

This section describes terms and definitions used in this document.

Profile See ONVIF Profile Policy.

ONVIF Device Computer appliance or software program that exposes one or
multiple ONVIF Web Services.

ONVIF Client Computer appliance or software program that uses ONVIF Web
Services.

Configuration Entity A network video device media abstract component that is used to
produce a media stream on the network, i.e. video and/or audio
stream.

Media Profile A media profile maps a video and/or audio source to a video and/

or an audio encoder, PTZ and analytics configurations.

SOAP SOAP is a lightweight protocol intended for exchanging structured
information in a decentralized, distributed environment. It uses
XML technologies to define an extensible messaging framework
providing a message construct that can be exchanged over a
variety of underlying protocols.

Device Test Tool ONVIF Device Test Tool that tests ONVIF Device implementation
towards the ONVIF Test Specification set.

Media 2 Service Services to determine the streaming properties of requested media
streams.

3.3 Abbreviations

This section describes abbreviations used in this document.

HTTP Hyper Text Transport Protocol.

AAC Advanced Audio Coding.

URI Uniform Resource Identifier.

WSDL Web Services Description Language.
XML eXtensible Markup Language.
JPEG Joint Photographic Experts Group.
TTL Time To Live.

www.onvif.org 29

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4 Test Overview

This section describes about the test setup and prerequisites needed, and the test policies that
should be followed for test case execution.

4.1 Test Setup

4.1.1 Network Configuration for DUT

The generic test configuration for the execution of test cases defined in this document is as shown
below (Figure 1).

Based on the individual test case requirements, some of the entities in the below setup may not be
needed for the execution of those corresponding test cases.

Figure 4.1. Test Configuration for DUT

Wireless Access
DHCP Server DNS Server Point
| |
NTP Server Switching Hub HTTP Froxy
BUT '
(Device Under Router ﬂ?ggﬁﬁ;‘t
Test)

DUT: ONVIF device to be tested. Hereafter, this is referred to as DUT (Device Under Test).

ONVIF Client (Test Tool): Tests are executed by this system and it controls the behavior of the
DUT. It handles both expected and unexpected behavior.

HTTP Proxy: provides facilitation in case of RTP and RTSP tunneling over HTTP.

Wireless Access Point: provides wireless connectivity to the devices that support wireless
connection.

30 www.onvif.org

OnviF’ | wsmanggres

DNS Server: provides DNS related information to the connected devices.

DHCP Server: provides IPv4 Address to the connected devices.
NTP Server: provides time synchronization between ONVIF Client and DUT.

Switching Hub: provides network connectivity among all the test equipments in the test
environment. All devices should be connected to the Switching Hub. When running multiple test
instances in parallel on the same network, the Switching Hub should be configured to use filtering
in order to avoid multicast traffic being flooded to all ports, because this may affect test stability.

Router: provides router advertisements for IPv6 configuration.

4.2 Prerequisites

The pre-requisites for executing the test cases described in this Test Specification are:
1. The DUT shall be configured with an IPv4 address.
2. The DUT shall be IP reachable [in the test configuration].
3. The DUT shall be able to be discovered by the Test Tool.

4. The DUT shall be configured with the time i.e. manual configuration of UTC time and if NTP
is supported by DUT, then NTP time shall be synchronized with NTP Server.

5. The DUT time and Test tool time shall be synchronized with each other either manually or
by common NTP server

4.3 Test Policy

This section describes the test policies specific to the test case execution of each functional block.

The DUT shall adhere to the test policies defined in this section.

4.3.1 Media Configuration

Prior to the execution of Media Configuration test cases, DUT shall be discovered by ONVIF Client
using device management service, and it shall demonstrate media capabilities to ONVIF Client
using GetServiceCapabilities command.

DUT shall support at least one media profile with Video Configuration. Video Configuration shall
include video source and video encoder media entities.

DUT shall support either H.264 or H.265 encoding.

www.onvif.org 31

O n V I F ® Standardizing IP Connectivity
for Physical Security

ONVIF Client shall explicitly specify the optional media formats supported by DUT.

ONVIF Client shall explicitly specify if the DUT supports Audio and PTZ.

DUT shall allow creation of at least one media profile by ONVIF Client. In certain test cases, ONVIF
Client may create new media configuration (i.e. media profile and media entities). In such cases,
the test procedure will delete those modified configurations at the end of the test procedure.

DUT should respond with proper response message for all SOAP actions. Sending fault messages
such as "ter:ConfigurationConflict" will be treated as FAILURE of the test cases.

Please refer to Section 5 for Media Configuration Test Cases.

32 www.onvif.org

ONVIE® | imsgres

5 Media Configuration Test Cases

5.1 Media Profile

5.1.1 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING

Test Case ID: MEDIA2-1-1-1

Specification Coverage: Video Streaming (Profile T Specification)
Feature Under Test: GetProfiles

WSDL Reference: media2.wsdl, deviceio.wsdl

Test Purpose: To verify that DUT has a ready-to-use Media Service 2.0 Profile for streaming video
(either H.264 or H.265) per video source.

Pre-Requisite: Media2 Service is received from the DUT, DevicelO Service is received from the
DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetVideoSources request.
4. The DUT responds with GetVideoSourcesResponse message with parameters
+ Token list =: videoSource TokenList
5. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
+ Type[0] := All
6. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

7. For each Video Source token videoSourceToken in videoSourceTokenList repeat the
following steps:

www.onvif.org 33

OnviF | empnggre

71. If profileList does not contain at least one Media Profile with

Configurations.VideoSource.SourceToken value is equal to videoSourceToken and
with Configurations.VideoEncoder, which Configurations.VideoEncoder.Encoding
equals to "H264" or "H265", FAIL the test and skip other steps.

Test Result:
PASS -
» DUT passes all assertions.
FAIL -
* DUT did not send GetVideoSourcesResponse message.

» DUT did not send GetProfilesResponse message.

5.1.2 CREATE MEDIA PROFILE WITH PRE-DEFINED
CONFIGURATION

Test Case ID: MEDIA2-1-1-2

Specification Coverage: Get media profiles, Create media profile, Delete media profile.

Feature Under Test: GetProfiles, CreateProfile, DeleteProfile

WSDL Reference: media2.wsdl

Test Purpose: To verify the DUT can create media profile with populated configuration parameter.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the
DUT. Video Source Configuration is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. Subscribtion ONVIF Client deletes Media Profile if Maximum Number of Media Profiles is
reached by following the procedure mentioned in Annex A.1.

4. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfCompleteList - Video Source Configurations list

34 www.onvif.org

ONVIE® | imsgres

5. If DUT supports Pull-Point Notification feature and Profile Changed Notification feature,

ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/ProfileChanged" - Notification Topic

* out s - Subscription Reference

* out currentTime - current time for the DUT

» out terminationTime - Subscription Termination time
6. ONVIF Client invokes CreateProfile request with parameters

* Name := "testMedia2"

» Configuration[0].Type := VideoSource

» Configuration[0].Token = videoSource ConfCompleteList[0].@token
7. The DUT responds with CreateProfileResponse with parameters

» Token =: profileToken

8. If DUT supports Pull-Point Notification feature and Profile Changed Notification feature,
ONVIF Client retrieves and checks tns1:Media/ProfileChanged event for the specified
Media Profile profile by following the procedure mentioned in Annex A.5 with the following
input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profile Token - Media Profile token
9. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
» Type[0] := VideoSource
10.The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

11. If profileList is empty, FAIL the test and skip other steps.

www.onvif.org 35

ONVIE® | imsgres

12.If profileList contains more than one item, FAIL the test and skip other steps.

13.If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

14.1f profileList{0].Configurations.VideoSource.@token 1=
videoSourceConfCompleteList[0]. @token, FAIL the test and skip other steps.

15.ONVIF Client invokes DeleteProfile request with parameters
» Token := profile Token
16.The DUT responds with DeleteProfileResponse message.

17.1f DUT supports Pull-Point Notification feature and Profile Changed Notification feature,
ONVIF Client retrieves and checks tns1:Media/ProfileChanged event for the specified
Media Profile profile by following the procedure mentioned in Annex A.5 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time
* in profileToken - Media Profile token

18.If subscription was created at step 5, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference
19.ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
* Type skipped
20.The DUT returns env:Sender/ter:InvalidArgVal/ter:NoProfile SOAP 1.2 fault.
Test Result:
PASS -
» DUT passes all assertions.
FAIL -

* DUT did not send GetProfilesResponse message.

36 www.onvif.org

OnviF’ | wsmanggres

» DUT did not send DeleteProfileResponse message.

» DUT did not send CreateProfileResponse message.

* The DUT did not send the env:Sender/ter:Action/ter:NoConfig SOAP 1.2 fault message.
Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.
Note: See Annex in [ONVIF Base Test] for Invalid SOAP 1.2 fault message definition.

Note: See Annex A.7 for Name and Token Parameters Length limitations.

5.1.3 DYNAMIC MEDIA PROFILE CONFIGURATION

Test Case ID: MEDIA2-1-1-3

Specification Coverage: Get media profiles, Create media profile, Delete media profile, Add
one or more configurations to a profile, Remove one or more configurations from a profile, Get
configurations.

Feature Under Test: GetProfiles, CreateProfile, DeleteProfile, AddConfiguration,
RemoveConfiguration, GetVideoEncoderConfigurations, GetVideoSourceConfigurations

WSDL Reference: media2.wsdl
Test Purpose: To verify the behavior of the DUT for dynamic media profile configuration.
Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client creates new Media Profile or removes all configurations from fixed Media
Profile by following the procedure mentioned in Annex A.8 with the following input and output
parameters

» out newProfileFlag - flag that indicates that new Media Profile was created
 out profile Token - empty Media Profile

4. If DUT supports Pull-Point Notification feature and Profile Changed Notification feature,
ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

www.onvif.org 37

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in "tns1:Media/ProfileChanged" - Notification Topic

» out s - Subscription Reference
» out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time

5. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

6. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

6.1. ONVIF Client invokes AddConfiguration request with parameters
 ProfileToken = profile Token
* Name skipped
» Configuration[0].Type = VideoSource
» Configuration[0]. Token = videoSourceConfiguration.@token
6.2. The DUT responds with AddConfigurationResponse message.

6.3. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged event for the
specified Media Profile profile by following the procedure mentioned in Annex A.5 with
the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profileToken - Media Profile token
6.4. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken

» Type[0] := VideoSource

38 www.onvif.org

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

ONVIE® | imsgres

The DUT responds with GetProfilesResponse message with parameters

 Profiles list =: profileList

If profileList is empty, FAIL the test and skip other steps.

If profileList contains more than one item, FAIL the test and skip other steps.
If profileList[0].@token != profile Token, FAIL the test and skip other steps.

If profileList[0].Configurations.VideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

If DUT supports Video

6.10.1. ONVIF Client invokes GetVideoEncoderConfigurations request with
parameters

» ConfigurationToken skipped
+ ProfileToken = profile Token

6.10.2. The DUT responds with compatible video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

+ Configurations list =: videoEncoderConfigurationList

6.10.3. If videoEncoderConfigurationList.Configurations is skipped or empty, FAIL the
test and skip other steps.

6.10.4. Set videoEncoderConfiguration =
videoEncoderConfigurationList.Configurations[0].

6.10.5. ONVIF Client invokes AddConfiguration request with parameters
» ProfileToken := profile Token
* Name skipped
» Configuration[0].Type := VideoEncoder
+ Configuration[0].Token := videoEncoderConfiguration.@token
6.10.6. The DUT responds with AddConfigurationResponse message.

6.10.7. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged

www.onvif.org 39

ONVIE® | imsgres

event for the specified Media Profile profile by following the procedure

mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
6.10.8. ONVIF Client invokes GetProfiles request with parameters
+ Token := profile Token
* Type[0] := VideoSource
* Type[1] := VideoEncoder
6.10.9. The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList
6.10.10.f profileList is empty, FAIL the test and skip other steps.
6.10.11.1f profileList contains more than one item, FAIL the test and skip other steps.
6.10.12.If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

6.10.13.f profileList[0].Configurations.VideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

6.10.14If profileList[0].Configurations.VideoEncoder.@token 1=
videoEncoderConfiguration.@token, FAIL the test and skip other steps.

6.10.15.0NVIF Client invokes RemoveConfiguration request with parameters
 ProfileToken := profile Token
+ Configuration[0].Type := VideoEncoder
» Configuration[0].Token skipped

6.10.16.The DUT responds with RemoveConfigurationResponse message.

6.10.17.1f DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged

40 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

event for the specified Media Profile profile by following the procedure

mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
6.10.18.ONVIF Client invokes GetProfiles request with parameters
+ Token := profile Token
* Type[0] := VideoSource
* Type[1] := VideoEncoder
6.10.19.The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList
6.10.20.If profileList is empty, FAIL the test and skip other steps.
6.10.21.If profileList contains more than one item, FAIL the test and skip other steps.

6.10.22.f profileList[0].Configurations.VideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

6.10.23.If profileList[0].Configurations contains VideoEncoder, FAIL the test and skip
other steps.

6.11. If the DUT supports Analytics:
6.11.1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken = profile Token

6.11.2. The DUT responds with compatible analytics configurations in
GetAnalyticsConfigurationsResponse with parameters

+ Configurations list =: analyticsConfigurationList

6.11.3. If analyticsConfigurationList.Configurations is skipped or empty, go to the step
6.13.

www.onvif.org 41

ONVIE® | imsgres

6.11.4. Set analyticsConfiguration := analyticsConfigurationList.Configurations[0].

6.11.5. ONVIF Client invokes AddConfiguration request with parameters

ProfileToken := profile Token

» Name skipped

Configuration[0]. Type := Analytics

Configuration[0].Token := analyticsConfiguration.@token
6.11.6. The DUT responds with AddConfigurationResponse message.

6.11.7. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
 in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
6.11.8. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
* Type[0] := "VideoSource"
* Type[1] := "Analytics"
6.11.9. The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList
6.11.10.If profileList is empty, FAIL the test and skip other steps.
6.11.11.1f profileList contains more than one item, FAIL the test and skip other steps.
6.11.12.1f profileList[0]. @token != profile Token, FAIL the test and skip other steps.

6.11.13.If profileList[0].Configurations.VideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

42 www.onvif.org

ONVIE® | imsgres

6.11.14.If profileList[0].Configurations.Analytics.@token 1=
analyticsConfiguration.@token, FAIL the test and skip other steps.

6.11.15.0NVIF Client invokes RemoveConfiguration request with parameters
+ ProfileToken := profile Token
» Configuration[0].Type := Analytics
+ Configuration[0].Token skipped

6.11.16.The DUT responds with RemoveConfigurationResponse message.

6.11.17.1f DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profileToken - Media Profile token
6.11.18.ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
» Type[0] := VideoSource
* Type[1] := Analytics
6.11.19.The DUT responds with GetProfilesResponse message with parameters
+ Profiles list =: profileList
6.11.20.1f profileList is empty, FAIL the test and skip other steps.
6.11.21.If profileList contains more than one item, FAIL the test and skip other steps.

6.11.22.If profileList[0].Configurations.VideoSource.@token I=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

6.11.23.1f profileList[0].Configurations contains Analytics, FAIL the test and skip other
steps.

www.onvif.org 43

O n VI F ® | Standardizing IP Connectivity
for Physical Security

6.12. If the DUT supports Metadata:
6.12.1. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken = profile Token

6.12.2. The DUT responds with compatible metadata configurations in
GetMetadataConfigurationsResponse with parameters

» Configurations list =: metadataConfigurationList

6.12.3. If metadataConfigurationList.Configurations is skipped or empty, go to the step
6.13.

6.12.4. Set metadataConfiguration := metadataConfigurationList.Configurations[0].
6.12.5. ONVIF Client invokes AddConfiguration request with parameters

+ ProfileToken = profile Token

* Name skipped

+ Configuration[0].Type = Metadata

» Configuration[0].Token = metadataConfiguration.@token
6.12.6. The DUT responds with AddConfigurationResponse message.

6.12.7. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
6.12.8. ONVIF Client invokes GetProfiles request with parameters

» Token := profile Token

44 www.onvif.org

ONVIE® | imsgres

* Type[0] := VideoSource
+ Type[1] := Metadata
6.12.9. The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList
6.12.10.f profileList is empty, FAIL the test and skip other steps.
6.12.11.If profileList contains more than one item, FAIL the test and skip other steps.
6.12.12If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

6.12.13.f profileList[0].Configurations.VideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

6.12.14If profileList{0].Configurations.Metadata.@token 1=
metadataConfiguration.@token, FAIL the test and skip other steps.

6.12.15.0NVIF Client invokes RemoveConfiguration request with parameters
» ProfileToken = profile Token
+ Configuration[0].Type = Metadata
» Configuration[0].Token skipped

6.12.16.The DUT responds with RemoveConfigurationResponse message.

6.12.17.1f DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
6.12.18.ONVIF Client invokes GetProfiles request with parameters

» Token := profile Token

www.onvif.org 45

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* Type[0] := VideoSource
+ Type[1] := Metadata

6.12.19.The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList

6.12.20.f profileList is empty, FAIL the test and skip other steps.

6.12.21If profileList contains more than one item, FAIL the test and skip other steps.

6.12.221f profileList[0].ConfigurationsVideoSource.@token 1=
videoSourceConfiguration.@token, FAIL the test and skip other steps.

6.12.23.If profileList[0].Configurations contains Metadata, FAIL the test and skip other
steps.

6.13. ONVIF Client invokes RemoveConfiguration request with parameters
» ProfileToken = profile Token
» Configuration[0].Type = VideoSource
» Configuration[0]. Token = videoSourceConfiguration.@token

6.14. The DUT responds with RemoveConfigurationResponse message.

6.15. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged event for the
specified Media Profile profile by following the procedure mentioned in Annex A.5 with
the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profileToken - Media Profile token
6.16. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken

» Type[0] := VideoSource

46 www.onvif.org

OnviF | empnggre

6.17. The DUT responds with GetProfilesResponse message with parameters

* Profiles list =: profileList
6.18. If profileList is empty, FAIL the test and skip other steps.
6.19. If profileList contains more than one item, FAIL the test and skip other steps.

6.20. If profileList{0].Configurations contains VideoSource, FAIL the test and skip other
steps.

7. If analyticsConfigurationList.Configurations was skipped or empty for each
videoSourceConfiguration at step 6.11.3, FAIL the test, restore DUT settings and skip other
steps.

8. If the DUT supports Audio:

8.1. ONVIF Client retrieves Audio Source Configurations list by following the procedure
mentioned in Annex A.9 with the following input and output parameters

» out audioSourceConfList - Audio Source Configurations list

8.2. For each Audio Source Configuration audioSourceConfiguration in
audioSourceConfList repeat the following steps:

8.2.1. ONVIF Client invokes AddConfiguration request with parameters
» ProfileToken = profile Token
» Name skipped
+ Configuration[0].Type = AudioSource
+ Configuration[0].Token = audioSourceConfiguration.@token
8.2.2. The DUT responds with AddConfigurationResponse message.

8.2.3. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

www.onvif.org 47

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in profileToken - Media Profile token

8.2.4. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioSource
8.2.5. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
8.2.6. If profileList is empty, FAIL the test and skip other steps.
8.2.7. If profileList contains more than one item, FAIL the test and skip other steps.
8.2.8. If profileList[0].@token != profile Token, FAIL the test and skip other steps.

8.29. If profileList[0].Configurations.AudioSource.@token 1=
audioSourceConfiguration.@token, FAIL the test and skip other steps.

8.2.10. ONVIF Client invokes GetAudioEncoderConfigurations request with
parameters

+ ConfigurationToken skipped
 ProfileToken = profile Token

8.2.11. The DUT responds with GetAudioEncoderConfigurationsResponse with
parameters

» Configurations list =: audioEncoderConfigurationList

8.2.12. If audioEncoderConfigurationList.Configurations is skipped or empty, FAIL the
test and skip other steps.

8.2.13. Set audioEncoderConfiguration =
audioEncoderConfigurationList.Configurations[0].

8.2.14. ONVIF Client invokes AddConfiguration request with parameters
* ProfileToken := profile Token
» Name skipped

» Configuration[0].Type := AudioEncoder

48 www.onvif.org

ONVIE® | imsgres

+ Configuration[0].Token := audioEncoderConfiguration.@token

8.2.15. The DUT responds with AddConfigurationResponse message.

8.2.16. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
 in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
8.2.17. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioSource
* Type[0] := AudioEncoder
8.2.18. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
8.2.19. If profileList is empty, FAIL the test and skip other steps.
8.2.20. If profileList contains more than one item, FAIL the test and skip other steps.
8.2.21. If profileList[0].@token != profile Token, FAIL the test and skip other steps.

8.2.22. If profileList[0].Configurations.AudioSource.@token 1=
audioSourceConfiguration.@token, FAIL the test and skip other steps.

8.2.23. If profileList[0].Configurations.AudioEncoder.@token 1=
audioEncoderConfiguration.@token, FAIL the test and skip other steps.

8.2.24. ONVIF Client invokes RemoveConfiguration request with parameters
+ ProfileToken := profile Token

» Configuration[0].Type := AudioEncoder

www.onvif.org 49

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Configuration[0]. Token skipped
8.2.25. The DUT responds with RemoveConfigurationResponse message.

8.2.26. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
 in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
8.2.27. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioSource
* Type[1] := AudioEncoder
8.2.28. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
8.2.29. If profileList is empty, FAIL the test and skip other steps.
8.2.30. If profileList contains more than one item, FAIL the test and skip other steps.

8.2.31. If profileList{0].Configurations.AudioSource.@token 1=
audioSourceConfiguration.@token, FAIL the test and skip other steps.

8.2.32. If profileList[0].Configurations contains AudioEncoder, FAIL the test and skip
other steps.

8.2.33. ONVIF Client invokes RemoveConfiguration request with parameters
* ProfileToken = profile Token
» Configuration[0].Type = AudioSource

+ Configuration[0].Token skipped

50 www.onvif.org

ONVIE® | imsgres

8.2.34. The DUT responds with RemoveConfigurationResponse message.

8.2.35. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
8.2.36. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioSource
8.2.37. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
8.2.38. If profileList is empty, FAIL the test and skip other steps.
8.2.39. If profileList contains more than one item, FAIL the test and skip other steps.

8.2.40. If profileList[0].Configurations contains AudioSource, FAIL the test and skip
other steps.

9. If the DUT supports Audio Output:

9.1. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

+ out audioOutputConfList - Audio Output Configurations list

9.2. For each Audio Output Configuration audioOutputConfiguration in
audioOutputConfList repeat the following steps:

9.2.1. ONVIF Client invokes AddConfiguration request with parameters
 ProfileToken = profile Token

» Name skipped

www.onvif.org 51

ONVIE® | imsgres

» Configuration[0].Type = AudioOutput

» Configuration[0].Token = audioOutputConfiguration.@token
9.2.2. The DUT responds with AddConfigurationResponse message.

9.2.3. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
9.2.4. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioOutput
9.2.5. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
9.2.6. If profileList is empty, FAIL the test and skip other steps.
9.2.7. If profileList contains more than one item, FAIL the test and skip other steps.
9.2.8. If profileList[0].@token != profile Token, FAIL the test and skip other steps.

9.29. If profileList[0].Configurations.AudioOutput. @token 1=
audioOutputConfiguration.@token, FAIL the test and skip other steps.

9.2.10. ONVIF Client invokes GetAudioDecoderConfigurations request with
parameters

+ ConfigurationToken skipped
* ProfileToken = profile Token

9.2.11. The DUT responds with GetAudioDecoderConfigurationsResponse with
parameters

52 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Configurations list =: audioDecoderConfigurationList

9.2.12. If audioDecoderConfigurationList.Configurations is skipped or empty, FAIL the
test and skip other steps.

9.2.13. Set audioDecoderConfiguration =
audioDecoderConfigurationList.Configurations[0].

9.2.14. ONVIF Client invokes AddConfiguration request with parameters
* ProfileToken := profile Token
* Name skipped
+ Configuration[0].Type := AudioDecoder
» Configuration[0].Token := audioDecoderConfiguration.@token
9.2.15. The DUT responds with AddConfigurationResponse message.

9.2.16. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profile Token - Media Profile token
9.2.17. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
* Type[0] := AudioOutput
* Type[1] := AudioDecoder
9.2.18. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

9.2.19. If profileList is empty, FAIL the test and skip other steps.

www.onvif.org 53

ONVIE® | imsgres

9.2.20. If profileList contains more than one item, FAIL the test and skip other steps.

9.2.21. If profileList[0].@token != profile Token, FAIL the test and skip other steps.

9.2.22. If profileList[0].Configurations.AudioOutput.@token 1=
audioOutputConfiguration.@token, FAIL the test and skip other steps.

9.2.23. If profileList[0].Configurations.AudioDecoder.@token 1=
audioDecoderConfiguration.@token, FAIL the test and skip other steps.

9.2.24. ONVIF Client invokes RemoveConfiguration request with parameters
+ ProfileToken := profile Token
+ Configuration[0].Type := AudioDecoder
» Configuration[0]. Token skipped

9.2.25. The DUT responds with RemoveConfigurationResponse message.

9.2.26. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profile Token - Media Profile token
9.2.27. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
* Type[0] := AudioOutput
* Type[1] := AudioDecoder
9.2.28. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

9.2.29. If profileList is empty, FAIL the test and skip other steps.

54 www.onvif.org

ONVIE® | imsgres

9.2.30. If profileList contains more than one item, FAIL the test and skip other steps.

9.2.31. If profileList[0].Configurations.AudioOutput.@token 1=
audioOutputConfiguration.@token, FAIL the test and skip other steps.

9.2.32. If profileList[0].Configurations contains AudioDecoder, FAIL the test and skip
other steps.

9.2.33. ONVIF Client invokes RemoveConfiguration request with parameters
* ProfileToken = profile Token
» Configuration[0].Type = AudioOutput
+ Configuration[0].Token skipped

9.2.34. The DUT responds with RemoveConfigurationResponse message.

9.2.35. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile profile by following the procedure
mentioned in Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profileToken - Media Profile token
9.2.36. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
* Type[0] := AudioOutput
9.2.37. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
9.2.38. If profileList is empty, FAIL the test and skip other steps.
9.2.39. If profileList contains more than one item, FAIL the test and skip other steps.

9.2.40. If profileList[0].Configurations contains AudioOutput, FAIL the test and skip
other steps.

www.onvif.org 55

ONVIE® | imsgres

10.If newProfileFlag = true, do the following steps:
10.1. ONVIF Client invokes DeleteProfile request with parameters
» Token := profileToken
10.2. The DUT responds with DeleteProfileResponse message.
10.3. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
» Type skipped
10.4. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoProfile SOAP 1.2 fault.

11.If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference
12. ONVIF Client restores DUT configuration if requered.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
» DUT did not send DeleteProfileResponse message.
» DUT did not send AddConfigurationResponse message.
* DUT did not send RemoveConfigurationResponse message.
+ DUT did not send GetVideoEncoderConfigurationsResponse message.
» DUT did not send GetAnalyticsConfigurationsResponse message.
» DUT did not send GetAudioEncoderConfigurationsResponse message.
+ DUT did not send GetAudioDecoderConfigurationsResponse message.

» DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault message.

56 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.

Note: See Annex in [ONVIF Base Test] for Invalid SOAP 1.2 fault message definition.

Note: See Annex A.7 for Name and Token Parameters Length limitations.

5.1.4 GET PROFILES

Test Case ID: MEDIA2-1-1-4
Specification Coverage: GetProfiles (Media2 Service Specification)
Feature Under Test: GetProfiles
WSDL Reference: media2.wsdl
Test Purpose: To verify the behavior of the DUT for GetProfiles with different Type parameters.
Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
+ Type[0] =: All
4. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList1

5. If profileList1 contains at least two items with the same @token, FAIL the test and skip other
steps.

6. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type skipped
7. The DUT responds with GetProfilesResponse message with parameters

» Profiles list =: profileList2

www.onvif.org 57

OnviF | empnggre

8. If profileList2 contains at least two items with the same @token, FAIL the test and skip other
steps.

9. If amount of profiles in profileList2 is not equal to amount of profiles in profileList1, FAIL the
test and skip other steps.

10.For each Profile profile in profileList2 repeat the following steps:

10.1. If profileList1 does not contain profile with token equals to profile.token, FAIL the test
and skip other steps.

10.2. If profile contains not empty Configurations element, FAIL the test and skip other steps.
11. ONVIF Client invokes GetProfiles request with parameters

» Token skipped

* Type[0] =: VideoSource
12.The DUT responds with GetProfilesResponse message with parameters

* Profiles list =: profileList3

13.If profileList3 contains at least two items with the same @token, FAIL the test and skip other
steps.

14.1f amount of profiles in profileList3 is not equal to amount of profiles in profileList1, FAIL the
test and skip other steps.

15.For each Profile profile in profileList3 repeat the following steps:

15.1. If profile contains at least one configuration in Configurations element differs from
VideoSource, FAIL the test and skip other steps.

15.2. If amount of VideoSource elements in profile is not equal to amount of VideoSource
elements in profileList1[0], where profileList1[0] is profile with token equals to
profile.token, FAIL the test and skip other steps.

15.3. If profile.Configurations.VideoSource element is not equal to
profileList1[0].Configurations.VideoSource element, where profileList1[0] is profile with
token equals to profile.token, FAIL the test and skip other steps.

16.If Analytics feature is supported:
16.1. ONVIF Client invokes GetProfiles request with parameters

+ Token skipped

58 www.onvif.org

ONVIE® | imsgres

* Type[0] =: Analytics
16.2. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList4

16.3. If profileList4 contains at least two items with the same @token, FAIL the test and skip
other steps.

16.4. If amount of profiles in profileList4 is not equal to amount of profiles in profileList1, FAIL
the test and skip other steps.

16.5. For each Profile profile in profileList4 repeat the following steps:

16.5.1f profile contains at least one configuration in Configurations element differs from
Analytics, FAIL the test and skip other steps.

16.5.2f amount of Analytics elements in profile is not equal to amount of Analytics
elements in profileList1[0], where profileList1[0] is profile with token equals to
profile.token, FAIL the test and skip other steps.

16.5.3f profile.Configurations.Analytics element is not equal to
profileList1[0].Configurations.Analytics element, where profileList1[0] is profile
with token equals to profile.token, FAIL the test and skip other steps.

17.1f Metadata feature is supported:
17.1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] =: Metadata
17.2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList5

17.3. If profileList5 contains at least two items with the same @token, FAIL the test and skip
other steps.

17.4. If amount of profiles in profileList5 is not equal to amount of profiles in profileList1, FAIL
the test and skip other steps.

17.5. For each Profile profile in profileList5 repeat the following steps:

www.onvif.org 59

O n V I F ® Standardizing IP Connectivity
for Physical Security

17.5.1f profile contains at least one configuration in Configurations element differs from

Metadata, FAIL the test and skip other steps.

17.5.2f amount of Metadata elements in profile is not equal to amount of Metadata
elements in profileList1[0], where profileList1[0] is profile with token equals to
profile.token, FAIL the test and skip other steps.

17.5.3f profile.Configurations.Metadata element is not equal to
profileList1[0].Configurations.Metadata element, where profileList1[0] is profile
with token equals to profile.token, FAIL the test and skip other steps.

Test Resulit:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.
Note: The following fields are compared at step 15.3:
» SourceToken
* Name
» Bounds.x
* Bounds.y
* Bounds.width
* Bounds.height
» Extension.Rotate
» Extension.Rotate.Mode
» Extension.Rotate.Degree
» Extension.Extension.LensDescription list (XFactor will be used as a key)
+ Extension.Extension.LensDescription.FocalLength

» Extension.Extension.LensDescription.Offset.x

60 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ Extension.Extension.LensDescription.Offset.y
» Extension.Extension.LensDescription.Projection list (Angle and Radius will be used as key)
+ Extension.Extension.LensDescription.Projection. Transmittance
Note: The following fields are compared at step 16.5.3 [59]:
* Name

+ AnalyticsEngineConfiguration.AnalyticsModule list (Type and Name will be used as key.
Parameters item will not be compared).

+ AnalyticsEngineConfiguration.RuleEngineConfiguration list (Type and Name will be used as
key. Parameters item will not be compared).

Note: The following fields are compared at step 16.5.3 [60]:
* Name
* CompressionType
» Geolocation
+ PTZStatus.Status
+ PTZStatus.Position
» Events.Filter (only field presence will be compared)
» Events.SubscriptionPolicy (only field presence will be compared)
* Analytics

+ AnalyticsEngineConfiguration.AnalyticsModule list (Type and Name will be used as key.
Parameters item will not be compared).

5.1.5 CREATE MEDIA PROFILE WITH CONFIGURATIONS

Test Case ID: MEDIA2-1-1-5
Specification Coverage: Get media profiles, Create media profile.
Feature Under Test: GetProfiles, CreateProfile

WSDL Reference: media2.wsdl

www.onvif.org 61

ONVIE® | imsgres

Test Purpose: To verify the DUT can create media profile with video source configuration
parameter, audio source configuration parameter and audio output configuration parameter.

Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. Subscribtion ONVIF Client deletes Media Profile if Maximum Number of Media Profiles is
reached by following the procedure mentioned in Annex A.1.

4. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfCompleteList - Video Source Configurations list
5. ONVIF Client invokes CreateProfile request with parameters
* Name := "testMedia"
» Configuration[0].Type := VideoSource
» Configuration[0].Token = videoSource ConfCompleteList[0].@token
6. The DUT responds with CreateProfileResponse with parameters
» Token =: profileToken
7. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
+ Type[0] := All
8. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
9. If profileList is empty, FAIL the test and skip other steps.
10.If profileList contains more than one item, FAIL the test and skip other steps.

11. If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

62 www.onvif.org

ONVIE® | imsgres

12.1f profileList[0].Configurations.VideoSource.@token I=
videoSourceConfCompleteList[0]. @token, FAIL the test and skip other steps.

13.ONVIF Client deletes created profile by following the procedure mentioned in Annex A.11
with the following input and output parameters

* in profile Token - Media profile token
14.If Media2 Audio is supported

14.1. ONVIF Client retrieves Audio Source Configurations list by following the procedure
mentioned in Annex A.9 with the following input and output parameters

+ out audioSourceConfCompleteList - Audio Source Configurations list
14.2. ONVIF Client invokes CreateProfile request with parameters
* Name := "testMedia"
» Configuration[1].Type := AudioSource
» Configuration[1].Token = audioSourceConfCompleteList{0].@token
14.3. The DUT responds with CreateProfileResponse with parameters
» Token =: profileToken
14.4. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
. Type[0] := All
14.5. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
14.6. If profileList is empty, FAIL the test and skip other steps.
14.7. If profileList contains more than one item, FAIL the test and skip other steps.
14.8. If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

14.9. If profileList[0].Configurations.AudioSource.@token 1=
audioSourceConfCompleteList[0].@token, FAIL the test and skip other steps.

14.100NVIF Client deletes created profile by following the procedure mentioned in Annex
A.11 with the following input and output parameters

www.onvif.org 63

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in profileToken - Media profile token
15.1f Media2 Audio Outputs is supported

15.1. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

+ out audioOutputConfCompleteList - Audio Output Configurations list
15.2. ONVIF Client invokes CreateProfile request with parameters
» Name := "testMedia"
» Configuration[0].Type := AudioOutput
» Configuration[0]. Token = audioOutputConfCompleteList[0].@token
15.3. The DUT responds with CreateProfileResponse with parameters
» Token =: profile Token
15.4. ONVIF Client invokes GetProfiles request with parameters
» Token := profileToken
+ Type[0] := All
15.5. The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList
15.6. If profileList is empty, FAIL the test and skip other steps.
15.7. If profileList contains more than one item, FAIL the test and skip other steps.
15.8. If profileList[0]. @token != profile Token, FAIL the test and skip other steps.

15.9. If profileList[0].Configurations.AudioOutput. @token 1=
audioOutputConfCompleteList{0].@token, FAIL the test and skip other steps.

15.100NVIF Client deletes created profile by following the procedure mentioned in Annex
A.11 with the following input and output parameters

* in profile Token - Media profile token
Test Result:

PASS —

64 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.
« DUT did not send CreateProfileResponse message.

Note: See Annex A.7 for Name and Token Parameters Length limitations.

5.1.6 REMOVE ALL CONFIGURATIONS FROM MEDIA
PROFILE
Test Case ID: MEDIA2-1-1-6

Specification Coverage: Remove one or more configurations from a profile (Media 2 Service
Specification)

Feature Under Test: RemoveConfiguration
WSDL Reference: media2.wsdl

Test Purpose: To verify the removal of all configurations from Media Profile with
RemoveConfiguration command and Type = All.

Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
« Type[0] := All
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. For each Media Profile profile in profileList list repeat the following steps:

www.onvif.org 65

O n VI F ® | Standardizing IP Connectivity
for Physical Security

5.1. ONVIF Client invokes RemoveConfiguration request with parameters

 ProfileToken := profile.@token
+ Configuration[0].Type := All
» Configuration[0].Token skipped
5.2. The DUT responds with RemoveConfigurationResponse message.
5.3. ONVIF Client invokes GetProfiles request with parameters
» Token := profile.@token
« Type[0] := All
5.4. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList1
5.5. If profileList1[0].Configurations is not empty, FAIL the test and and skip other steps.
5.6. ONVIF Client restores configurations of Media Profile with @token = profile.@token.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message(s).

+ DUT did not send RemoveConfigurationResponse message(s).

5.1.7 FIXED MEDIA PROFILE CONFIGURATION

Test Case ID: MEDIA2-1-1-7

Specification Coverage: Media profiles (Media 2 Service Specification)
Feature Under Test: RemoveConfiguration, AddConfiguration, GetProfiles.
WSDL Reference: media2.wsdl

Test Purpose: To verify the removal of all configurations from fixed Media Profile. To verify adding
of configurations to fixed Media Profile.

66 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-Requisite: Media2 Service is received from the DUT.

Test Configuration: ONVIF Client and DUT.

Test Procedure:

1.

2.

Start an ONVIF Client.

Start the DUT.

ONVIF Client invokes GetProfiles request with parameters

* Token skipped

« Type[0] := Al

The DUT responds with GetProfilesResponse message with parameters

» Profiles list =: profileList

For each Media Profile profile in profileList list with @fixed = true repeat the following steps:

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

ONVIF Client invokes RemoveConfiguration request with parameters
 ProfileToken := profile.@token

» Configuration[0].Type := All

» Configuration[0].Token skipped

The DUT responds with RemoveConfigurationResponse message.
ONVIF Client invokes GetProfiles request with parameters

» Token := profile.@token

+ Type[0] := All

The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList1

If profileList1[0].Configurations is not empty, FAIL the test and and skip other steps.

ONVIF Client invokes AddConfiguration request to restore configurations of Media
Profile profile with parameters

» ProfileToken := profile.@token

» For each configuration item configuration in profile.Configurations list:

www.onvif.org 67

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Configuration[0].Type := configuration
» Configuration[0]. Token := configuration.@token
5.7. The DUT responds with AddConfigurationResponse message.
5.8. ONVIF Client invokes GetProfiles request with parameters
» Token := profile.@token
« Type[0] := All
5.9. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList2

5.10. If list of configurations in profileList2[0].Configurations is not equal to list of
configurations in profileList[0].Configurations, were profileList[0] is profile with token =
profile.@token, FAIL the test and and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message(s).
* DUT did not send RemoveConfigurationResponse message(s).

« DUT did not send AddConfigurationResponse message(s).

5.1.8 READY TO USE MEDIA PROFILE FOR METADATA
STREAMING

Test Case ID: MEDIA2-1-1-8

Specification Coverage: Metadata streaming (Profile M Specification)
Feature Under Test: GetProfiles

WSDL Reference: media2.wsdl

Test Purpose: To verify that DUT has a ready-to-use Media Service 2.0 Profile for streaming
metadata.

68 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-Requisite: Media2 Service is received from the DUT. Profile M scope. Metadata feature is
supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
« Type[0] := All
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list
6. For each video source configuration videoSourceConf in videoSourceConfList

6.1. If profileList does not contain at least one Media Profile with
Configurations.VideoSource.token = videoSourceConftoken and with
Configurations.Metadata, FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send GetProfilesResponse message.

5.1.9 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING (PROFILE M)

Test Case ID: MEDIA2-1-1-9

www.onvif.org 69

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Specification Coverage: Video streaming (Profile M Specification)

Feature Under Test: GetProfiles
WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT has a ready-to-use Media Service 2.0 Profile for streaming video.

Pre-Requisite: Media2 Service is received from the DUT. Profile M scope. Video feature is
supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
+ Type[0] := All
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list
6. For each video source configuration videoSourceConf in videoSourceConfList

6.1. If profileList does not contain at least one Media Profile with
Configurations.VideoSource.token = videoSourceConf.token and with
Configurations.VideoEncoder, FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send GetProfilesResponse message.

70 www.onvif.org

ONVIE® | imsgres

5.1.10 READY TO USE MEDIA PROFILE FOR VIDEO
STREAMING (H.264)

Test Case ID: MEDIA2-1-1-10

Specification Coverage: Video Streaming (Profile V Specification)
Feature Under Test: GetProfiles

WSDL Reference: media2.wsdl, deviceio.wsdl

Test Purpose: To verify that DUT has a ready-to-use Media Service 2.0 Profile for streaming video
(H.264) per video source.

Pre-Requisite: Media2 Service is received from the DUT, DevicelO Service is received from the
DUT. Profile V is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetVideoSources request.
4. The DUT responds with GetVideoSourcesResponse message with parameters
» Token list =: videoSource TokenList
5. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
« Type[0] := All
6. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

7. For each Video Source token videoSourceToken in videoSourceTokenList repeat the
following steps:

71. If profileList does not contain at least one Media Profile with
Configurations.VideoSource.SourceToken value is equal to videoSourceToken and

www.onvif.org 71

ONVIE® | imsgres

with Configurations.VideoEncoder, which Configurations.VideoEncoder.Encoding
equals to "H264", FAIL the test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetVideoSourcesResponse message.

* DUT did not send GetProfilesResponse message.

5.2 Video Configuration
5.2.1 Video Source Configuration

5.2.1.1 GET VIDEO SOURCE CONFIGURATION OPTIONS

Test Case ID: MEDIA2-2-2-1

Specification Coverage: Get configuration options, Video source configuration.
Feature Under Test: GetVideoSourceConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving Video Source Configuration options for specified Video Source
Configuration, for specified Profile, generic for the Device.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters

» out cap - Media2 Service Capabilities

72 www.onvif.org

OnviF | empnggre

4. ONVIF Client invokes GetVideoSourceConfigurationOptions request with parameters

» ConfigurationToken skipped
* ProfileToken skipped

5. DUT responds with GetVideoSourceConfigurationOptionsResponse message with
parameters

* Options =: options

6. If options.BoundsRange.XRange.Min > options.BoundsRange.XRange.Max, FAIL the test
and skip other steps.

7. If options.BoundsRange.YRange.Min > options.BoundsRange.YRange.Max, FAIL the test
and skip other steps.

8. If options.BoundsRange.WidthRange.Min > options.BoundsRange.WidthRange.Max, FAIL
the test and skip other steps.

9. If options.BoundsRange.HeightRange.Min > options.BoundsRange.HeightRange.Max,
FAIL the test and skip other steps.

10.If cap.@Rotation = true:
10.1. If options.Extension.Rotate is skipped, FAIL the test and skip other steps.

11. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

12.ONVIF Client invokes GetVideoSourceConfigurationOptions request with parameters
» ConfigurationToken := videoSourceConfList{0].@token
* ProfileToken skipped

13.DUT responds with GetVideoSourceConfigurationOptionsResponse message with
parameters

» Options =: options

14.ONVIF Client retrieves Media Profile, which contains Video Source Configuration by
following the procedure mentioned in Annex A.12 with the following input and output
parameters

* out profile - Media Profile with Video Source Configuration

www.onvif.org 73

ONVIE® | imsgres

15.ONVIF Client invokes GetVideoSourceConfigurationOptions request with parameters

» ConfigurationToken skipped
* ProfileToken := profile.@token

16.DUT responds with GetVideoSourceConfigurationOptionsResponse message with
parameters

* Options =: options
17.1f Media Profile profile was changed at step 14, ONVIF Client restores Media Profile.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetVideoSourceConfigurationOptionsResponse message.

5.2.1.2 GET VIDEO SOURCE CONFIGURATIONS

Test Case ID: MEDIA2-2-2-2

Specification Coverage: Get configurations, Video source configuration.
Feature Under Test: GetVideoSourceConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Video Source Configuration List, Video Source
Configuration by Configuration token and compatible Video Source Configuration by Profile token.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client invokes GetVideoSourceConfigurations request with parameters

74 www.onvif.org

OnviF | empnggre

» ConfigurationToken skipped
» ProfileToken skipped

4. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfCompleteList

5. If videoSourceConfCompleteList is empty, FAIL the test and skip other steps.

6. If videoSourceConfCompleteList contains at least two items with the same @token, FAIL
the test and skip other steps.

7. For each videoSourceConfiguration in videoSourceConfCompleteList repeat the following
steps:

7.1. If videoSourceConfiguration contains ViewMode

7.1.1. If videoSourceConfiguration.NiewMode value is not equal to one of value
defined in tt:ViewModes list provided in the procedure Annex A.13, FAIL the
test and skip other steps.

7.1.2. If videoSourceConfiguration.ViewMode = "tt:Fisheye"

7.1.2.1. If videoSourceConfiguration.Extension does not contain at least one
LensDescription element, PASS this step with a WARNING.

7.2. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken := videoSourceConfiguration.@token
 ProfileToken skipped

7.3. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList

7.4. |If videoSourceConfList is empty, FAIL the test and skip other steps.

7.5. IfvideoSourceConfList contains more than one item, FAIL the test and skip other steps.

7.6. If videoSourceConfList does not contain item with @token =
videoSourceConfiguration.@token, FAIL the test and skip other steps.

8. ONVIF Client invokes GetProfiles request with parameters

» Token skipped

www.onvif.org 75

ONVIE® | imsgres

* Type[0] := VideoSource
9. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
10.For each Media Profile profile in profileList repeat the following steps:
10.1. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken := profile.@token
10.2. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList

10.3. If videoSourceConfList contains at least two items with the same @token, FAIL the
test and skip other steps.

10.4. If videoSourceConfCompleteList does not contain at least one item with @token from
videoSourceConfList, FAIL the test and skip other steps.

10.5. If profile.Configurations contains VideoSource:

10.5.1. If videoSourceConfList does not contain item with @token =
profile.Configurations.VideoSource.@token, FAIL the test and skip other
steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetVideoSourceConfigurationsResponse message.

* DUT did not send GetProfilesResponse message.

5.2.1.3 VIDEO SOURCE CONFIGURATIONS AND VIDEO
SOURCE CONFIGURATION OPTIONS CONSISTENCY

Test Case ID: MEDIA2-2-2-3

76 www.onvif.org

ONVIE® | imsgres

Specification Coverage: Get configurations, Get configuration options, Video source

configuration.
Feature Under Test: GetProfiles, GetVideoSourceConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all Video Source Configurations are consistent with Video Source
Configuration Options.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters

» out cap - Media2 Service Capabilities

4. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

5. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

5.1. ONVIF Client invokes GetVideoSourceConfigurationOptions request with
parameters

» ConfigurationToken := videoSourceConfiguration.@token
* ProfileToken skipped

5.2. DUT responds with GetVideoSourceConfigurationOptionsResponse message
with parameters

» Options =: options

53. If videoSourceConfiguration.SourceToken is not in
options.VideoSourceTokensAvailable list, FAIL the test and skip other steps.

www.onvif.org 77

OnviF | empnggre

5.4. If videoSourceConfiguration.Bounds.x < options.BoundsRange.XRange.Min, FAIL the

test and skip other steps.

5.5. If videoSourceConfiguration.Bounds.x > options.BoundsRange.XRange.Max, FAIL
the test and skip other steps.

5.6. If videoSourceConfiguration.Bounds.y < options.BoundsRange.YRange.Min, FAIL the
test and skip other steps.

5.7. If videoSourceConfiguration.Bounds.y > options.BoundsRange.YRange.Max, FAIL
the test and skip other steps.

5.8. If videoSourceConfiguration.Bounds.width < options.BoundsRange.WidthRange.Min,
FAIL the test and skip other steps.

59. If videoSourceConfiguration.Bounds.width >
options.BoundsRange.WidthRange.Max, FAIL the test and skip other steps.

5.10. If videoSourceConfiguration.Bounds.height <
options.BoundsRange.HeightRange.Min, FAIL the test and skip other steps.

511. If videoSourceConfiguration.Bounds.height >
options.BoundsRange.HeightRange.Max, FAIL the test and skip other steps.

5.12. If cap.@Rotation = true:
5.12.1. If options.Extension.Rotate is skipped, FAIL the test and skip other steps.

5.12.2. If videoSourceConfiguration.Extension.Rotate is skipped, FAIL the test and
skip other steps.

5.12.3. If videoSourceConfiguration.Extension.Rotate.Mode is not in the
options.Extension.Rotate.Mode list, FAIL the test and skip other steps.

5.12.4. If options.Extension.Rotate.DegreeList specified and contains at least one
Item:

5.12.4.1. If videoSourceConfiguration.Extension.Rotate.Degree is specified
and not listed in options.Extension.Rotate.DegreeList.ltem list, FAIL
the test and skip other steps.

Test Result:
PASS -

» DUT passes all assertions.

78 www.onvif.org

ONVIE® | imsgres

FAIL -

+ DUT did not send GetVideoSourceConfigurationOptionsResponse message.

5.2.1.4 PROFILES AND VIDEO SOURCE CONFIGURATIONS
CONSISTENCY

Test Case ID: MEDIA2-2-2-4

Specification Coverage: Get configurations, Get media profiles, Video source configuration.
Feature Under Test: GetVideoSourceConfigurations, GetProfiles

WSDL Reference: media2.wsdl

Test Purpose: To verify all Media Profiles are consistent with Video Source Configurations.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := VideoSource
4. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

5. For each Media Profile profile in profileList, which contains Configurations.VideoSource
repeat the following steps:

5.1. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
+ ConfigurationToken := profile.Configurations.VideoSource.@token
 ProfileToken skipped

5.2. The DUT responds with GetVideoSourceConfigurationsResponse with parameters

www.onvif.org 79

O n V I F ® Standardizing IP Connectivity
for Physical Security

» Configurations list =: videoSourceConfList

5.3. If videoSourceConfList[0] is not equal to profile.Configurations.VideoSource, FAIL the
test and skip other steps.

Test Result:
PASS -
» DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
» DUT did not send GetVideoSourceConfigurationsResponse message.
Note: The following fields are compared at step 5.3:
» SourceToken
* Name
» Bounds.x
* Bounds.y
» Bounds.width
* Bounds.height
» Extension.Rotate
+ Extension.Rotate.Mode
+ Extension.Rotate.Degree
» Extension.Extension.LensDescription list (XFactor will be used as a key)
+ Extension.Extension.LensDescription.FocalLength
» Extension.Extension.LensDescription.Offset.x
» Extension.Extension.LensDescription.Offset.y
+ Extension.Extension.LensDescription.Projection list (Angle and Radius will be used as key)

+ Extension.Extension.LensDescription.Projection. Transmittance

80 www.onvif.org

OnviF | empnggre

5.2.1.5 MODIFY ALL SUPPORTED VIDEO SOURCE
CONFIGURATIONS

Test Case ID: MEDIA2-2-2-5

Specification Coverage: Get -configurations, Get configuration options, Video source
configuration, Modify a configuration.

Feature Under Test: GetVideoSourceConfigurationOptions, GetVideoSourceConfigurations,
SetVideoSourceConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify whether all supported Video Source Configuration Options can be set.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/ConfigurationChanged" - Notification Topic
* out s - Subscription reference

 out currentTime - current time for the DUT

» out terminationTime - Subscription termination time

5. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

5.1. ONVIF Client invokes GetVideoSourceConfigurationOptions request with
parameters

www.onvif.org 81

ONVIE® | imsgres

» ConfigurationToken := videoSourceConfiguration.@token

* ProfileToken skipped

5.2. DUT responds with GetVideoSourceConfigurationOptionsResponse message
with parameters

» Options =: options

5.3. ONVIF Client invokes SetVideoSourceConfiguration request with parameters
» Configuration.@token := videoSourceConfiguration.@token
+ Configuration.Name := "TestName1"

» Configuration.SourceToken := first value from options.VideoSource TokensAvailable
list

+ Configuration.Bounds.x := options.BoundsRange.XRange.Min

» Configuration.Bounds.y := options.BoundsRange.YRange.Min

+ Configuration.Bounds.width := options.BoundsRange.WidthRange.Min

» Configuration.Bounds.height := options.BoundsRange.HeightRange.Min

* If options.Extension.Rotate specified and options.Extension.Rotate.@Reboot !=
true:

» Configuration.Extension.Rotate.Mode = first value from
options.Extension.Rotate.Mode list

o If Configuration.Extension.Rotate.Mode ON and

options.Extension.Rotate.@Reboot != true:
+ If options.Extension.Rotate.DegreelList is specified and contains at least one Item:

» Configuration.Extension.Rotate.Degree = first value from
options.Extension.Rotate.DegreelList.ltem list

* If options.Extension.Rotate.DegreelList is not specified:
» Configuration.Extension.Rotate.Degree :=-180

5.4. DUT responds with SetVideoSourceConfigurationResponse message.

82 www.onvif.org

OnviF | empnggre

5.5. If DUT supports Pull-Point Notification feature and Configuration Changed Notification

feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time

* in videoSourceConfiguration.@token - Configuration token

in VideoSource - Configuration Type

5.6. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken := videoSourceConfiguration.@token
* ProfileToken skipped

5.7. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList

5.8. If videoSourceConfList[0] is not equal to Configuration from step 5.3, FAIL the test and
skip other steps.

5.9. ONVIF Client invokes SetVideoSourceConfiguration request with parameters
+ Configuration.@token := videoSourceConfiguration.@token
» Configuration.Name := "TestName2"

» Configuration.SourceToken := last value from options.VideoSource TokensAvailable
list

+ If options.BoundsRange.XRange.Min = options.BoundsRange.XRange.Max and
options.BoundsRange.YRange.Min = options.BoundsRange.YRange.Max and
options.BoundsRange.WidthRange.Min = options.BoundsRange.WidthRange.Max
and options.BoundsRange.HeightRange.Min =
options.BoundsRange.HeightRange.Max:

» Configuration.Bounds.x := options.BoundsRange.XRange.Min

» Configuration.Bounds.y := options.BoundsRange.YRange.Min

www.onvif.org 83

OnviF | empnggre

» Configuration.Bounds.width := options.BoundsRange.WidthRange.Min

+ Configuration.Bounds.height := options.BoundsRange.HeightRange.Min

o If options.BoundsRange.XRange.Min does not equal to
options.BoundsRange.XRange.Max or options.BoundsRange.YRange.Min
does not equal to options.BoundsRange.YRange.Max or
options.BoundsRange.WidthRange.Min does not equal to
options.BoundsRange.WidthRange.Max or
options.BoundsRange.HeightRange.Min does not equal to

options.BoundsRange.HeightRange.Max:

» Configuration.Bounds.x = (options.BoundsRange.XRange.Max +
options.BoundsRange.XRange.Min - options.BoundsRange.WidthRange.Min) / 2

» Configuration.Bounds.y = (options.BoundsRange.YRange.Max +
options.BoundsRange.YRange.Min - options.BoundsRange.HeightRange.Min) /
2

» Configuration.Bounds.width := min{options.BoundsRange.WidthRange.Max,

options.BoundsRange.XRange.Max - Configuration.Bounds.x}

» Configuration.Bounds.height := min{options.BoundsRange.HeightRange.Max,
options.BoundsRange.YRange.Max - Configuration.Bounds.y}

* If options.Extension.Rotate specified and options.Extension.Rotate.@Reboot !=
true:

» Configuration.Extension.Rotate.Mode = last value from
options.Extension.Rotate.Mode list

o If Configuration.Extension.Rotate.Mode = ON and
options.Extension.Rotate.@Reboot != true:

+ If options.Extension.Rotate.DegreeList is specified and contains at least one Item:

+ Configuration.Extension.Rotate.Degree = last value from
options.Extension.Rotate.DegreeList.ltem list

+ If options.Extension.Rotate.DegreelList is not specified:
+ Configuration.Extension.Rotate.Degree := 180

5.10. DUT responds with SetVideoSourceConfigurationResponse message.

84 www.onvif.org

OnviF | empnggre

5.11. If DUT supports Pull-Point Notification feature and Configuration Changed Notification

feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time

* in videoSourceConfiguration.@token - Configuration token

in VideoSource - Configuration Type

5.12. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken := videoSourceConfiguration.@token
* ProfileToken skipped

5.13. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList

5.14. If videoSourceConfList[0] is not equal to Configuration from step 5.9, FAIL the test and
skip other steps.

5.15. ONVIF Client restores settings of Video Source Configuration with @token =
videoSourceConfiguration.@token.

. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference

. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

7.1. ONVIF Client invokes GetVideoSourceConfigurationOptions request with
parameters

» ConfigurationToken := videoSourceConfiguration.@token

+ ProfileToken skipped

www.onvif.org 85

OnviF | empnggre

7.2. DUT responds with GetVideoSourceConfigurationOptionsResponse message

with parameters
» Options =: options

7.3. If options.Extension.Rotate specified and options.Extension.Rotate.@Reboot = true:
7.3.1.1f options.Extension.Rotate list contains only "OFF" value, skip other steps.
7.3.2.1f options.Extension.Rotate list contains only "AUTQO" value, skip other steps.

7.3.3.1f options.Extension.Rotate list contains only "ON" value and
options.Extension.Rotate.DegreelList.ltem list contains only O value, skip other
steps.

7.3.4.1f videoSourceConfiguration does not contain Extension.Rotate element, FAIL
the test and skip other steps.

7.3.5.0NVIF Client invokes SetVideoSourceConfiguration request with parameters
+ Configuration.@token := videoSourceConfiguration.@token
* Configuration.Name := "TestName1"

» Configuration.SourceToken = first value from
options.VideoSourceTokensAvailable list

+ Configuration.Bounds.x := options.BoundsRange.XRange.Min

+ Configuration.Bounds.y := options.BoundsRange.YRange.Min

+ Configuration.Bounds.width := options.BoundsRange.WidthRange.Min

+ Configuration.Bounds.height := options.BoundsRange.HeightRange.Min

» Configuration.Extension.Rotate.Mode = first value from
options.Extension.Rotate.Mode list differs from
videoSourceConfiguration.Extension.Rotate.Mode (if applicable).

« If Configuration.Extension.Rotate.Mode = ON:

+ If options.Extension.Rotate.DegreeList is specified and contains at least one
ltem:

» Configuration.Extension.Rotate.Degree = first value from
options.Extension.Rotate.DegreelList.ltem list differs from O (if applicable)

86 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ If options.Extension.Rotate.DegreeList is not specified or empty:

+ Configuration.Extension.Rotate.Degree := -180

7.3.6.0NVIF Client waits for the Device reboot by following the procedure mentioned
in Annex A.15.

7.3.7.DUT responds with SetVideoSourceConfigurationResponse message.

7.3.8.0NVIF Client invokes GetVideoSourceConfigurations request with
parameters

» ConfigurationToken := videoSourceConfiguration.@token
* ProfileToken skipped

7.3.9.The DUT responds with GetVideoSourceConfigurationsResponse with
parameters

+ Configurations list =: videoSourceConfList

7.3.10f videoSourceConfList[0] is not equal to Configuration from step 7.3.5, FAIL the
test and skip other steps.

7.3.110NVIF Client restores settings of Video Source Configuration with @token =
videoSourceConfiguration.@token.

7.3.12NVIF Client waits for the Device reboot by following the procedure mentioned
in Annex A.15.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetVideoSourceConfigurationsResponse message.
* DUT did not send SetVideoSourceConfigurationResponse message.
» DUT did not send GetVideoSourceConfigurationOptionsResponse message.
Note: The following fields are compared at step 5.8 and 5.14:

» SourceToken

www.onvif.org 87

O n V I F ® Standardizing IP Connectivity
for Physical Security

* Name
» Bounds.x
* Bounds.y
* Bounds.width
* Bounds.height
+ Extension.Rotate
» Extension.Rotate.Mode
+ Extension.Rotate.Degree
» Extension.Extension.LensDescription list (XFactor will be used as a key)
» Extension.Extension.LensDescription.FocalLength
» Extension.Extension.LensDescription.Offset.x
» Extension.Extension.LensDescription.Offset.y
+ Extension.Extension.LensDescription.Projection list (Angle and Radius will be used as key)
+ Extension.Extension.LensDescription.Projection. Transmittance
Note: The following fields are compared at step 7.3.7:
+ Extension.Rotate
» Extension.Rotate.Mode

+ Extension.Rotate.Degree

5.2.1.6 GET VIDEO SOURCE CONFIGURATIONS — INVALID
TOKEN

Test Case ID: MEDIA2-2-2-6
Specification Coverage: Get configurations, Video source configuration.
Feature Under Test: GetVideoSourceConfigurations

WSDL Reference: media2.wsdl

88 www.onvif.org

ONVIE® | imsgres

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetVideoSourceConfigurations with

invalid token.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

* out videoSourceConfList - Video Source Configurations list
4. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken := other than listed in videoSourceConfList
» ProfileToken skipped
5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.
Test Result:
PASS —
* DUT passes all assertions.
FAIL —

* The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault
message

5.2.1.7 PROFILES AND VIDEO SOURCE CONFIGURATION
OPTIONS CONSISTENCY

Test Case ID: MEDIA2-2-2-7

Specification Coverage: None.

Feature Under Test: GetProfiles, GetVideoSourceConfigurationOptions

WSDL Reference: media2.wsdl

www.onvif.org 89

ONVIE® | imsgres

Test Purpose: To check that GetProfiles command and GetVideoSourceConfigurationOptions
command are consistent.

Pre-Requisite: Media2 Service is received from the DUT. Video Source Configuration is supported
by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters:
» Type = VideoSource
4. The DUT responds with GetProfilesResponse message with parameters:
» Profiles List =: profilesList

5. For each media profile profile1 from profilesList containing Configurations.VideoSource
element do the following steps:

5.1. ONVIF Client invokes GetVideoSourceConfigurationOptionsrequest with
parameters:

» ConfigurationToken=profile 1.Configurations.VideoSource.@token
* ProfileToken =: profile1.@token

5.2. The DUT responds with GetVideoSourceConfigurationOptionsResponse
message with parameters:

» Options =: configurationOptions

5.3. If profile1.Configurations.VideoSource.SourceToken is not equal to one of
configurationOptions.VideoSourceTokensAvailable items, FAIL the test and skip other
steps.

54. If profile 1.Configurations.VideoSource.Bounds.@x <
configurationOptions.BoundsRange.XRange.Min, FAIL the test and skip other steps.

55. If profile 1.Configurations.VideoSource.Bounds.@x >
configurationOptions.BoundsRange.XRange.Max, FAIL the test and skip other steps.

90 www.onvif.org

OnviF’ | wsmanggres

56. If profile 1.Configurations.VideoSource.Bounds.@y <

configurationOptions.BoundsRange.YRange.Min, FAIL the test and skip other steps.

57. If profile1.Configurations.VideoSource.Bounds.@y >
configurationOptions.BoundsRange.YRange.Max, FAIL the test and skip other steps.

58. If profile1.Configurations.VideoSource.Bounds.@width <
configurationOptions.BoundsRange.WidthRange.Min, FAIL the test and skip other
steps.

59. If profile 1.Configurations.VideoSource.Bounds.@width >
configurationOptions.BoundsRange.WidthRange.Max, FAIL the test and skip other
steps.

5.10. I profile1.Configurations.VideoSource.Bounds.@height <
configurationOptions.BoundsRange.HeightRange.Min, FAIL the test and skip other
steps.

511. If profile1.Configurations.VideoSource.Bounds.@height >
configurationOptions.BoundsRange.HeightRange.Max, FAIL the test and skip other
steps.

5.12. If profile1.Configurations.VideoSource contains Extension element:
5.12.1. If profile1.Configurations.VideoSource.Extension contains Rotate element:

5.12.1.1. If profile1.Configurations.VideoSource.Extension.Rotate.Mode is
not equal to one of configurationOptions.Extension.Rotate.Mode
items, FAIL the test and skip other steps.

5.12.1.2. If profile1.Configurations.VideoSource.Extension.Rotate contains
Degree element and
profile1.Configurations.VideoSource.Extension.Rotate.Degree is
not equal to one of
configurationOptions.Extension.Rotate.DegreeList.ltems items,
FAIL the test and skip other steps.

5.12.2. If profile1.Configurations.VideoSource.Extension contains Extension element:

5.12.21. If profile1.Configurations.VideoSource.Extension.Extension
contains SceneOrientation element and
profile1.Configurations.VideoSource.Extension.Extension.SceneOrientation.Mode
is not equal to one of configurationOptions.Extension.Extension.
SceneOrientationMode items, FAIL the test and skip other steps.

www.onvif.org 91

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.

+ DUT did not send GetVideoSourceConfigurationOptionsResponse message.

5.2.2 Video Encoder Configuration

5.2.2.1 VIDEO ENCODER CONFIGURATION

Test Case ID: MEDIA2-2-3-1

Specification coverage: Get media profiles (Media2 Service), Get configurations (Media2 Service)
Feature under test: GetProfiles, GetVideoEncoderConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify DUT sends All Video Encoder Configurations, specific Video Encoder
Configuration, and Video Encoder Configurations compatible with specific profile.

Pre-Requisite: Media2 Service is received from the DUT. Video feature is supported by the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetVideoEncoderConfigurations request with parameters
» ConfigurationToken - skipped
* ProfileToken - skipped

4. The DUT responds with all video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

92 www.onvif.org

OnviF | empnggre

» Configurations list =: videoEncoderConfCompleteList1

5. If videoEncoderConfCompletelList contains at least two items with the same @token, FAIL
the test and skip other steps.

6. ONVIF Client invokes GetProfiles request with parameters
» Token - skipped
* Type list - skipped
7. The DUT responds with GetProfilesResponse message with parameters
 Profiles list =: profileList1
8. For each Media Profile profile1 in profileList1 repeat the following steps:
8.1. ONVIF Client invokes GetVideoEncoderConfigurations request with parameters
+ ConfigurationToken - skipped
* ProfileToken := profile1.@token

8.2. The DUT responds with compatible video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: videoEncoderConfList1

8.3. |If videoEncoderConfList1 contains at least two items with the same @token, FAIL the
test and skip other steps.

8.4. If profile1.Configurations contains VideoEncoder:

8.4.1. If videoEncoderConfList! does not contain item with @token =
profile1.Configurations.VideoEncoder.@token, FAIL the test and skip other
steps.

8.5. For each Video Encoder Configuration videoEncoderConf1 in videoEncoderConfList1
repeat the following steps:

8.5.1. If videoEncoderConfCompleteList1 does not contain item with @token =
videoEncoderConf1.@token, FAIL the test and skip other steps.

9. For each Video Encoder Configuration configuration1 in videoEncoderConfCompleteList1
repeat the following steps:

9.1. ONVIF Client invokes GetVideoEncoderConfigurations request with parameters

www.onvif.org 93

OnviF | empnggre

» ConfigurationToken := configuration1.@token

9.2. The DUT responds with requested video encoder configuration in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: videoEncoderConfList2

9.3. If videoEncoderConfList2 does not contain only one item with the same @token, FAIL
the test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.

» DUT did not send GetVideoEncoderConfigurationsResponse message.

5.2.2.2 VIDEO ENCODER CONFIGURATIONS AND VIDEO
ENCODER CONFIGURATION OPTIONS CONSISTENCY

Test Case ID: MEDIA2-2-3-2

Specification Coverage: None.

Feature Under Test: GetVideoEncoderConfigurations, GetVideoEncoderConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all video encoder configurations are consistent with video encoder
configurations options.

Pre-Requisite: Media2 Service is received from the DUT. Video feature is supported by the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client invokes GetVideoEncoderConfigurations to get all video encoder
configurations from DUT.

94 www.onvif.org

OnviF’ | wsmanggres

4. DUT sends the list of video encoder configurations.

5. ONVIF Client verifies the list of video encoder configurations sent by DUT.

6. For each Video Encoder Configuration in GetVideoEncoderConfigurationsResponse,
ONVIF Client saves this configuration in Configuration1 and runs the following steps:

6.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions with Configuration1
token as input argument.

6.2. DUT sends GetVideoEncoderConfigurationOptionsResponse with the list of video
encoder configuration options available for Configuration.

6.3. ONVIF Client verifies that Configuration1 parameters are consistent with at
least one option from GetVideoEncoderConfigurationOptionsResponse. See
details of fields mapping in Annex A.16 VideoEncoderConfigurationOptions and
VideoEncoderConfiguration mapping.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetVideoEncoderConfigurationsResponse message.
* DUT did not send GetVideoEncoderConfigurationOptionsResponse message.

+ DUT failed consistency check according to Annex A.16.

5.2.2.3 PROFILES AND VIDEO ENCODER CONFIGURATION
OPTIONS CONSISTENCY

Test Case ID: MEDIA2-2-3-3

Specification Coverage: None.

Feature Under Test: GetProfiles, GetVideoEncoderConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To check that GetProfiles command and GetVideoEncoderConfigurationOptions
command are consistent.

Pre-Requisite: Media2 Service is received from the DUT. Video feature is supported by the DUT.

www.onvif.org 95

OnviF | empnggre

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles with Type=VideoEncoder as input parameter.
4. DUT sends the list of existing media profiles in GetProfilesResponse message.

5. For each media profile from GetProfilesResponse, ONVIF Client saves this profile
in Profile1 variable, saves Profile1 Configurations VideoEncoder configuration in
Configuration1 variable and runs the following steps:

5.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions with
ConfigurationToken=Configuration1 and ProfileToken=Profile1 token as input
arguments.

5.2. DUT sends GetVideoEncoderConfigurationOptionsResponse with the list of
configuration options.

5.3. ONVIF Client verifies that Configuration1 parameters are consistent with at
least one option from GetVideoEncoderConfigurationOptionsResponse. See
details of fields mapping in Annex A.16 VideoEncoderConfigurationOptions and
VideoEncoderConfiguration mapping. ONVIF Client saves this option in Option1
variable.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
+ DUT did not send GetVideoEncoderConfigurationsResponse message.

» DUT failed consistency check according to Annex A.16

5.2.2.4 SET ALL SUPPORTED VIDEO ENCODER
CONFIGURATIONS

Test Case ID: MEDIA2-2-3-4

96 www.onvif.org

OnviF | empnggre

Specification Coverage: Get configurations, Get configuration options, Video encoder
configuration, Modify a configuration

Feature Under Test: GetVideoEncoderConfigurationOptions, GetVideoEncoderConfigurations,
SetVideoEncoderConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify whether all supported options can be set.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the
DUT. Video feature is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Encoder Configurations list by following the procedure
mentioned in Annex A.17 with the following input and output parameters

» out videoEncoderConfList - Video Encoder Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/ConfigurationChanged" - Notification Topic
» out s - Subscription reference

* out currentTime - current time for the DUT

» out terminationTime - Subscription termination time

5. Foreach Video Encoder Configuration videoEncoderConfiguration in videoEncoderConfList
repeat the following steps:

5.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions request with
parameters

+ ConfigurationToken := videoEncoderConfiguration.@token

* ProfileToken skipped

www.onvif.org 97

98

5.2.

5.3.

OnviF | empnggre

DUT responds with GetVideoEncoderConfigurationOptionsResponse message
with parameters

» Options list =: optionsList
For each options in optionsList repeat the following steps:

5.3.1. ONVIF Client invokes SetVideoEncoderConfiguration request with
parameters

+ Configuration.@token := videoEncoderConfiguration.@token
» Configuration.Name := "TestName1"

+ Configuration.@GovLength := if options.GovLengthRange is specified, set
minimum value from options.GovLengthRange list, otherwise, skip the
parameter

» Configuration.@Profile := if videoEncoderConfiguration.@Profile is
specified and options.@ProfilesSupported is specified and contains at least
one item, options.@ProfilesSupported[0], otherwise, skip the parameter

+ Configuration.Encoding := options.Encoding
+ Configuration.Resolution := options.ResolutionsAvailable[0]
+ Configuration.RateControl.@ConstantBitRate skipped

» Configuration.RateControl.@FrameRateLimit := minimum value from
options.FrameRatesSupported list

+ Configuration.RateControl.@BitrateLimit := options.BitrateRange.Min
+ Configuration.Multicast := videoEncoderConfiguration.Multicast
» Configuration.Quality := options.QualityRange.Min
5.3.2. DUT responds with SetVideoEncoderConfigurationResponse message.

5.3.3. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Media/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

www.onvif.org

ONVIE® | imsgres

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time
* in videoEncoderConfiguration.@token - Configuration token
* in VideoEncoder - Configuration Type

5.3.4. ONVIF Client invokes GetVideoEncoderConfigurations request with
parameters

» ConfigurationToken := videoEncoderConfiguration.@token
* ProfileToken skipped

5.3.5. The DUT responds with requested video encoder configuration in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: videoEncoderConfList

5.3.6. If videoEncoderConfList[0] is not equal to Configuration from step 5.3.1, FAIL
the test and skip other steps.

5.3.7. ONVIF Client invokes SetVideoEncoderConfiguration request with
parameters

+ Configuration.@token := videoEncoderConfiguration.@token
» Configuration.Name := "TestName2"

» Configuration.@GovLength := if options.GovLengthRange is specified, set
maximum value from options.GovLengthRange list, otherwise, skip the
parameter

» Configuration.@Profile := if videoEncoderConfiguration.@Profile is
specified and options.@ProfilesSupported is specified and contains at least
one item, options.@ProfilesSupported[last], otherwise, skip the parameter

» Configuration.Encoding := options.Encoding
+ Configuration.Resolution := options.ResolutionsAvailable[last]
+ Configuration.RateControl.@ConstantBitRate skipped

» Configuration.RateControl.@FrameRateLimit := maximum value from
options.FrameRatesSupported list

www.onvif.org 99

OnviF | empnggre

» Configuration.RateControl. @BitrateLimit := options.BitrateRange.Max

+ Configuration.Multicast := videoEncoderConfiguration.Multicast
+ Configuration.Quality := options.QualityRange.Max
5.3.8. DUT responds with SetVideoEncoderConfigurationResponse message.

5.3.9. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Media/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in videoEncoderConfiguration.@token - Configuration token
* in VideoEncoder - Configuration Type

5.3.10. ONVIF Client invokes GetVideoEncoderConfigurations request with
parameters

+ ConfigurationToken := videoEncoderConfiguration.@token
* ProfileToken skipped

5.3.11. The DUT responds with requested video encoder configuration in
GetVideoEncoderConfigurationsResponse with parameters

+ Configurations list =: videoEncoderConfList

5.3.12. If videoEncoderConfList[0] is not equal to Configuration from step 5.3.7, FAIL
the test and skip other steps.

6. ONVIF Client restores settings for all Video Encoder Configurations.

7. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference

100 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetVideoEncoderConfigurationsResponse message.
+ DUT did not send SetVideoEncoderConfigurationsResponse message.
» DUT did not send SetVideoEncoderConfigurationOptionsResponse message.
Note: The following fields are compared at step 5.3.6 and 5.3.12:
* Name
* Encoding
* Resolution.Height
» Resolution.Width

» GovlLength

5.2.2.5 VIDEO ENCODER CONFIGURATION OPTIONS

Test Case ID: MEDIA2-2-3-5

Specification Coverage: Video Encoder Configuration Options.

Feature Under Test: GetVideoEncoderConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To validate video encoder configurations options.

Pre-Requisite: Media2 Service is received from the DUT. Video feature is supported by the DUT.
Test Configuration: ONVIF Client and DUT

Test Procedure:

1. Start an ONVIF Client.

www.onvif.org 101

OnviF | empnggre

2. Start the DUT.

3. ONVIF Client invokes GetVideoEncoderConfigurationOptions request with parameters
» ConfigurationToken skipped
» ProfileToken skipped

4. DUT responds with GetVideoEncoderConfigurationOptionsResponse with parameters
* Options list =: vecOptionsList

5. For each Options (options) in (vecOptionsList) repeat the following steps:
5.1. If options contains GovLengthRange, ONVIF Client checks the following:

5.1.1. If options.GovLengthRange list does not contain two values, FAIL the test and
skip other steps.

5.1.2. If options.GovLengthRange list contains more than two values, FAIL the test
and skip other steps.

5.1.3. If the first value in options.GovLengthRange list is greater than the second
value, FAIL the test and skip other steps.

5.2. If options contains FrameRatesSupported and options.FrameRatesSupported list is
not sorted with descending sort order, FAIL the test and skip other steps.

6. ONVIF Client invokes GetVideoEncoderConfigurations with parameters
» ConfigurationToken skipped
» ProfileToken skipped

7. The DUT responds with all video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: vecList
8. If vecList is empty, FAIL the test and skip other steps.
9. For each Video Encoder Configuration (vec) in vecList repeat the following steps:

9.1. ONVIF Client invokes GetVideoEncoderConfigurationOptions request with
parameters

» ConfigurationToken := vec.@token

« ProfileToken skipped

102 www.onvif.org

ONVIE® | imsgres

9.2. DUT responds with GetVideoEncoderConfigurationOptionsResponse with

parameters
» Options list =: vecOptionsList
9.3. For each Options (options) in (vecOptionsList) repeat the following steps:
9.3.1. If options contains GovLengthRange, ONVIF Client checks the following:

9.3.1.1. If options.GovLengthRange list does not contain two values, FAIL
the test and skip other steps.

9.3.1.2. If options.GovLengthRange list contains more than two values, FAIL
the test and skip other steps.

9.3.1.3. If the first value in options.GovLengthRange list is greater than the
second value, FAIL the test and skip other steps.

9.3.2. If options contains FrameRatesSupported and options.FrameRatesSupported
list is not sorted with descending sort order, FAIL the test and skip other steps.

Test Result:
PASS -
+ DUT passes all assertions.
FAIL -
+ DUT did not send GetVideoEncoderConfigurationOptionsResponse message.

+ DUT did not send GetVideoEncoderConfigurationsResponse message.

5.2.3 Video Source

5.2.3.1 GET VIDEO SOURCE MODES

Test Case ID: MEDIA2-2-4-1

Specification Coverage: Video source mode, GetVideoSourceModes.
Feature Under Test: GetVideoSourceModes

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving supported Video Source Modes for specified Video Source.

www.onvif.org 103

ONVIE® | imsgres

Pre-Requisite: Media2 Service is received from the DUT. Device 10 Service is received from the
DUT. Video sources modes is supported by Device as indicated by the VideoSourceMode=true
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Sources list by following the procedure mentioned in Annex
A.18 with the following input and output parameters

« out videoSourcesList - Video Sources list

4. Foreach Video Source token videoSource Token from videoSourcesList repeat the following
steps:

4.1. ONVIF Client invokes GetVideoSourceModes request with parameters
+ VideoSourceToken := videoSource Token

4.2. DUT responds with GetVideoSourceModesResponse message with parameters
+ VideoSourceModes list =: videoSourceModesList

4.3. If videoSourceModesList contains at least two items with the same @token, FAIL the
test and skip other steps.

4.4. If videoSourceModesList contains at least two items with Enabled=true, FAIL the test
and skip other steps.

4.5. If videoSourceModesList contains no items with Enabled=true, FAIL the test and skip
other steps.

4.6. If videoSourceModesList contains at least one item with empty Encodings list, FAIL
the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not send GetVideoSourceModesResponse message.

104 www.onvif.org

OnviF | empnggre

5.2.3.2 SET VIDEO SOURCE MODES

Test Case ID: MEDIA2-2-4-2

Specification Coverage: Video source mode, GetVideoSourceModes, SetVideoSourceModes.
Feature Under Test: GetVideoSourceModes, SetVideoSourceModes

WSDL Reference: media2.wsdl, deviceio.wsld

Test Purpose: To verify change of Video Source Mode for specified Video Source.

Pre-Requisite: Media2 Service is received from the DUT. Device IO Service is received from the
DUT. Video sources modes is supported by Device as indicated by the VideoSourceMode=true
capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Sources list by following the procedure mentioned in Annex
A.18 with the following input and output parameters

« out videoSourcesList - Video Sources list

4. Foreach Video Source token videoSource Token from videoSourcesList repeat the following
steps:

4.1. ONVIF Client invokes GetVideoSourceModes request with parameters
» VideoSourceToken := videoSource Token

4.2. DUT responds with GetVideoSourceModesResponse message with parameters
+ VideoSourceModes list =: videoSourceModesList

4.3. Set modeToEnable := videoSourceModesList[firsf].@token, where first is the index
number of the first item on the videoSourceModesList list that has no @Enabled or
@Enabled = false (if any).

4.4. ONVIF Client invokes SetVideoSourceMode request with parameters
+ VideoSourceToken := videoSource Token

* VideoSourceModeToken := mode ToEnable

www.onvif.org 105

OnviF | empnggre

4.5. DUT responds with SetVideoSourceModeResponse message with parameters

* Reboot =: rebootFlag

4.6. If rebootFlag = true, ONVIF Client waits for the Device reboot by following the
procedure mentioned in Annex A.15.

4.7. ONVIF Client invokes GetVideoSourceModes request with parameters
» VideoSourceToken := videoSource Token

4.8. DUT responds with GetVideoSourceModesResponse message with parameters
» VideoSourceModes list =: videoSourceModesList

4.9. If videoSourceModesList contains at least two items with @Enabled=true, FAIL the
test and skip other steps.

4.10. If videoSourceModesList item with @token = modeToEnable has no @Enabled or
@Enabled = false for it, FAIL the test and skip other steps.

4.11. If videoSourceModesList have only one item, go to step 4.20

4.12. Set modeToEnable := videoSourceModesList[/ast].@token, where last is the index
number of the last item on the videoSourceModesList list.

4.13. ONVIF Client invokes SetVideoSourceMode request with parameters
» VideoSourceToken := videoSource Token
+ VideoSourceModeToken := modeToEnable

4.14. DUT responds with SetVideoSourceModeResponse message with parameters
* Reboot =: rebootFlag

4.15. If rebootFlag = true, ONVIF Client waits for the Device reboot by following the
procedure mentioned in Annex A.15.

4.16. ONVIF Client invokes GetVideoSourceModes request with parameters
+ VideoSourceToken := videoSource Token
4.17. DUT responds with GetVideoSourceModesResponse message with parameters

» VideoSourceModes list =: videoSourceModesList

106 www.onvif.org

ONVIE® | imsgres

4.18. If videoSourceModesList contains at least two items with @Enabled=true, FAIL the

test and skip other steps.

4.19. If videoSourceModesList item with @token = modeToEnable has no @Enabled or
@Enabled = false for it, FAIL the test and skip other steps.

4.20. ONVIF Client restores settings for videoSourceModesList.
Test Result:
PASS —
* DUT passes all assertions.
FAIL -
+ DUT did not send GetVideoSourceModesResponse message.

* DUT did not send SetVideoSourceModesResponse message.

5.3 Audio Configuration
5.3.1 Audio Source Configuration

5.3.1.1 GET AUDIO SOURCE CONFIGURATION OPTIONS

Test Case ID: MEDIA2-3-1-1

Specification Coverage: Get configuration options, Audio source configuration.
Feature Under Test: GetAudioSourceConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving Audio Source Configuration options for specified Audio Source
Configuration, for specified Profile, generic for the Device.

Pre-Requisite:Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Test Configuration: ONVIF Client and DUT

Test Procedure:

www.onvif.org 107

ONVIE® | imsgres

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client invokes GetAudioSourceConfigurationOptions request with parameters
» ConfigurationToken skipped
» ProfileToken skipped

4. DUT responds with GetAudioSourceConfigurationOptionsResponse message with
parameters

* Options =: options

5. ONVIF Client retrieves Audio Source Configurations list by following the procedure
mentioned in Annex A.9 with the following input and output parameters

» out audioSourceConfCompleteList - Audio Source Configurations list

6. ONVIF Client invokes GetAudioSourceConfigurationOptions request with parameters
» ConfigurationToken := audioSourceConfigurationList{0].@token
» ProfileToken skipped

7. DUT responds with GetAudioSourceConfigurationOptionsResponse message with
parameters

» Options =: options

8. ONVIF Client retrieves Media Profile, which contains Audio Source Configuration by
following the procedure mentioned in Annex A.19 with the following input and output
parameters

 out profile - Media Profile with Audio Source Configuration

9. ONVIF Client invokes GetAudioSourceConfigurationOptions request with parameters
» ConfigurationToken skipped
* ProfileToken := profile.@token

10.DUT responds with GetAudioSourceConfigurationOptionsResponse message with
parameters

* Options =: options

108 www.onvif.org

ONVIE® | imsgres

11. If Media Profile profile was changed at step 8, ONVIF Client restores Media Profile.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

+ DUT did not send GetAudioSourceConfigurationOptionsResponse message.

5.3.1.2 GET AUDIO SOURCE CONFIGURATIONS

Test Case ID: MEDIA2-3-1-2

Specification Coverage: Get configurations, Audio source configuration.
Feature Under Test: GetAudioSourceConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Audio Source Configuration List, Audio Source
Configuration by Configuration token and compatible Audio Source Configuration by Profile token.

Pre-Requisite:Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
4. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfCompleteList

5. If audioSourceConfCompleteList is empty, FAIL the test and skip other steps.

www.onvif.org 109

OnviF | empnggre

6. If audioSourceConfCompleteList contains at least two items with the same @token, FAIL
the test and skip other steps.

7. For each Audio Source Configuration audioSourceConfiguration in
audioSourceConfCompleteList repeat the following steps:

7.1. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken := audioSourceConfiguration.@token
* ProfileToken skipped

7.2. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
+ Configurations list =: audioSourceConfList

7.3. If audioSourceConfList is empty, FAIL the test and skip other steps.

7.4. If audioSourceConfList contains more than one item, FAIL the test and skip other steps.

7.5. If audioSourceConfList does not contain item with @token =
audioSourceConfiguration.@token, FAIL the test and skip other steps.

8. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := AudioSource
9. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
10.For each Media Profile profile in profileList repeat the following steps:
10.1. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken := profile.@token
10.2. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfList

10.3. If audioSourceConfList contains at least two items with the same @token, FAIL the
test and skip other steps.

110 www.onvif.org

ONVIE® | imsgres

10.4. If audioSourceConfCompleteList does not contain at least one item with @token from
audioSourceConfList, FAIL the test and skip other steps.

10.5. If profile.Configurations contains AudioSource:

10.5.1. If audioSourceConfList does not contain item with @token =
profile.Configurations.AudioSource.@token, FAIL the test and skip other
steps.

Test Result:
PASS -
» DUT passes all assertions.
FAIL -
» DUT did not send GetAudioSourceConfigurationsResponse message.

» DUT did not send GetProfilesResponse message.

5.3.1.3 AUDIO SOURCE CONFIGURATIONS AND AUDIO
SOURCE CONFIGURATION OPTIONS CONSISTENCY
Test Case ID: MEDIA2-3-1-3

Specification Coverage: Get -configurations, Get configuration options, Audio source
configuration.

Feature Under Test: GetProfiles, GetAudioSourceConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all Audio Source Configurations are consistent with Audio Source
Configuration Options.

Pre-Requisite:Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.

2. Start the DUT.

www.onvif.org 111

OnviF | empnggre

3. ONVIF Client retrieves Audio Source Configurations list by following the procedure

mentioned in Annex A.9 with the following input and output parameters
» out audioSourceConfList - Audio Source Configurations list

4. For each Audio Source Configuration audioSourceConfiguration in audioSourceConfList
repeat the following steps:

4.1. ONVIF Client invokes GetAudioSourceConfigurationOptions request with
parameters

» ConfigurationToken := audioSourceConfiguration.@token
* ProfileToken skipped

4.2. DUT responds with GetAudioSourceConfigurationOptionsResponse message
with parameters

» Options =: options

4.3. If audioSourceConfiguration.SourceToken is not in options.InputTokensAvailable list,
FAIL the test and skip other steps.

Test Result:
PASS -

» DUT passes all assertions.
FAIL -

» DUT did not send GetAudioSourceConfigurationOptionsResponse message.

5.3.1.4 PROFILES AND AUDIO SOURCE CONFIGURATIONS

CONSISTENCY

Test Case ID: MEDIA2-3-1-4

Specification Coverage: Get configurations, Get media profiles, Audio source configuration.
Feature Under Test: GetAudioSourceConfigurations, GetAudioSourceConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all Media Profiles are consistent with Audio Source Configurations.

Pre-Requisite:Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

112 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := AudioSource
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. For each Media Profile profile in profileList which contains Configurations.AudioSource
repeat the following steps:

5.1. ONVIF Client invokes GetAudioSourceConfigurations request with parameters

» ConfigurationToken := profile.Configurations.AudioSource.@token ProfileToken
skipped

5.2. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfList

5.3. If audioSourceConfList[0] is not equal to profile.Configurations.AudioSource, FAIL the
test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.

» DUT did not send GetAudioSourceConfigurationsResponse message.

5.3.1.5 MODIFY ALL SUPPORTED AUDIO SOURCE
CONFIGURATIONS

Test Case ID: MEDIA2-3-1-5

www.onvif.org 113

OnviF | empnggre

Specification Coverage: Get configurations, Get configuration options, Audio source

configuration, Modify a configuration

Feature Under Test: GetAudioSourceConfigurationOptions, GetAudioSourceConfigurations,
SetAudioSourceConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify whether all supported Audio Source Configuration Options can be set.

Pre-Requisite:Media2 Service is received from the DUT. Event Service was received from
the DUT. Audio configuration is supported by the DUT as indicated by receiving the
GetAudioEncoderConfigurationOptionsResponse.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Source Configurations list by following the procedure
mentioned in Annex A.9 with the following input and output parameters

» out audioSourceConfList - Audio Source Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/ConfigurationChanged" - Notification Topic
» out s - Subscription reference

» out currentTime - current time for the DUT

» out terminationTime - Subscription termination time

5. For each Audio Source Configuration audioSourceConfiguration in audioSourceConfList
repeat the following steps:

5.1. ONVIF Client invokes GetAudioSourceConfigurationOptions request with
parameters

» ConfigurationToken := audioSourceConfiguration.@token

- ProfileToken skipped

114 www.onvif.org

OnviF | empnggre

5.2. DUT responds with GetAudioSourceConfigurationOptionsResponse message
with parameters

» Options =: options

5.3. ONVIF Client invokes SetAudioSourceConfiguration request with parameters
» Configuration.@token := audioSourceConfiguration.@token
+ Configuration.Name := "TestName1"

» Configuration.SourceToken := other then current value (if possible) from
options.InputTokensAvailable list

5.4. DUT responds with SetAudioSourceConfigurationResponse message.

5.5. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in audioSourceConfiguration.@token - Configuration token
* in AudioSource - Configuration Type
5.6. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken := audioSourceConfiguration.@token
 ProfileToken skipped
5.7. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfList

5.8. If audioSourceConfList[0] is not equal to Configuration from step 5.3, FAIL the test and
skip other steps.

5.9. ONVIF Client restores settings of Audio Source Configuration with @token =
audioSourceConfiguration.@token.

www.onvif.org 115

ONVIE® | imsgres

6. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioSourceConfigurationsResponse message.

* DUT did not send SetAudioSourceConfigurationResponse message.

» DUT did not send GetAudioSourceConfigurationOptionsResponse message.
Note: The following fields are compared at step 5.8:

» SourceToken

 Name

5.3.1.6 GET AUDIO SOURCE CONFIGURATIONS — INVALID
TOKEN

Test Case ID: MEDIA2-3-1-6

Specification Coverage: Get configurations, Audio source configuration.

Feature Under Test: GetAudioSourceConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetAudioSourceConfigurations with
invalid token.

Pre-Requisite:Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.

2. Start the DUT.

116 www.onvif.org

OnviF | empnggre

3. ONVIF Client retrieves Audio Source Configurations list by following the procedure
mentioned in Annex A.9 with the following input and output parameters

* out audioSourceConfCompleteList - Audio Source Configurations list
4. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken := other than listed in audioSourceConfCompleteList
» ProfileToken skipped
5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

* The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault
message.

5.3.2 Audio Encoder Configuration

5.3.2.1 G.711 AUDIO ENCODER CONFIGURATION

Test Case ID: MEDIA2-3-2-1

Specification Coverage: Get configurations, Get configuration options, Audio encoder
configuration, Modify a configuration.

Feature Under Test: GetAudioEncoderConfigurations, GetAudioEncoderConfigurationOptions,
SetAudioEncoderConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT changes audio configuration with G.711 Encoding properly.

Pre-Requisite:Media2 Service is received from the DUT. Event Service was received from the DUT.
Media2_G.711 feature is supported by DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

www.onvif.org 117

118

OnviF | empnggre

2. Start the DUT.

3. ONVIF Client retrieves Audio Encoder Configurations list by following the procedure
mentioned in Annex A.20 with the following input and output parameters

» out audioEncoderConfList - Audio Encoder Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/ConfigurationChanged" - Notification Topic

» out s - Subscription Reference

out currentTime - current time for the DUT
* out terminationTime - Subscription Termination time

5. Foreach Audio Encoder Configuration audioEncoderConfiguration in audioEncoderConfList
repeat the following steps:

5.1. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with
parameters

» ConfigurationToken := audioEncoderConfiguration.@token
* ProfileToken skipped

5.2. DUT responds with GetAudioEncoderConfigurationOptionsResponse message
with parameters

» Options list =: optionsList
5.3. |If optionsList contains an item with Encoding = PCMU, do the following steps:
5.3.1. Set options := first item from optionsList with Encoding = PCMU.

5.3.2. ONVIF Client invokes SetAudioEncoderConfiguration request with
parameters

» Configuration.@token := audioEncoderConfiguration.@token

» Configuration.Name = string different from
audioEncoderConfiguration.Name value (length shall be less than or equal
to 64 characters and it shall contain only readable characters)

www.onvif.org

OnviF | empnggre

» Configuration.Encoding := options.Encoding

» Configuration.Bitrate := minimum value from options.BitrateList.ltems
list if optionsBitrateList.ltems list contains items, otherwise,
audioEncoderConfiguration.Bitrate

+ Configuration.SampleRate = minimum value from
options.SampleRateList.Items list if options.SampleRateList.ltems list
contains items, otherwise, audioEncoderConfiguration.SampleRate

» Configuration.Multicast := audioEncoderConfiguration.Multicast
5.3.3. DUT responds with SetAudioEncoderConfigurationResponse message.

5.3.4. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Medial/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioEncoderConfiguration.@token - Configuration token
* in AudioEncoder - Configuration Type

5.3.5. ONVIF Client invokes GetAudioEncoderConfigurations request with
parameters

+ ConfigurationToken := audioEncoderConfiguration.@token
 ProfileToken skipped

5.3.6. The DUT responds with GetAudioEncoderConfigurationsResponse with
parameters

» Configurations list =: audioEncoderConfList

5.3.7. If audioEncoderConfList contains more items with @token =
audioEncoderConfiguration.@token than 1, FAIL the test and skip other steps.

www.onvif.org 119

OnviF | empnggre

5.3.8. If audioEncoderConfList[0] is not equal to Configuration from step 5.3.2, FAIL
the test and skip other steps.

5.3.9. ONVIF Client invokes SetAudioEncoderConfiguration request with
parameters

+ Configuration.@token := audioEncoderConfiguration.@token
» Configuration.Name := audioEncoderConfiguration.Name
+ Configuration.Encoding := options.Encoding

» Configuration.Bitrate := maximum value from options.BitrateList.ltems
list if options.BitrateList.ltems list contains items, otherwise,
audioEncoderConfiguration.Bitrate

» Configuration.SampleRate = maximum value from
options.SampleRateList.Items list if options.SampleRateList.ltems list
contains items, otherwise, audioEncoderConfiguration.SampleRate

+ Configuration.Multicast := audioEncoderConfiguration.Multicast
5.3.10. DUT responds with SetAudioEncoderConfigurationResponse message.

5.3.11. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Media/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioEncoderConfiguration.@token - Configuration token
+ in AudioEncoder - Configuration Type

5.3.12. ONVIF Client invokes GetAudioEncoderConfigurations request with
parameters

» ConfigurationToken := audioEncoderConfiguration.@token

+ ProfileToken skipped

120 www.onvif.org

O n V I F ® Standardizing IP Connectivity
for Physical Security

5.3.13. The DUT responds with GetAudioEncoderConfigurationsResponse with

parameters
+ Configurations list =: audioEncoderConfList

5.3.14. If audioEncoderConfList contains more items with @token =
audioEncoderConfiguration.@token than 1, FAIL the test and skip other steps.

5.3.15. If audioEncoderConfList[0] is not equal to Configuration from step 5.3.9, FAIL
the test and skip other steps.

6. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetAudioSourceConfigurationOptionsResponse message.
Note: The following fields are compared at step 5.3.8 and 5.3.15:
* @token
* Name
* Encoding
* Multicast.Address.Type
* Multicast.Address.|IPv4Address
* Multicast.Address.|IPv6Address
* Multicast.Port
* Multicast. TTL
* Multicast.AutoStart
+ Bitrate

+ SampleRate

www.onvif.org 121

OnviF | empnggre
5.3.2.2 AAC AUDIO ENCODER CONFIGURATION

Test Case ID: MEDIA2-3-2-2

Specification Coverage: Get configurations, Get configuration options, Audio encoder
configuration, Modify a configuration.

Feature Under Test: GetAudioEncoderConfigurations, GetAudioEncoderConfigurationOptions,
SetAudioEncoderConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT changes audio configuration with AAC Encoding properly.

Pre-Requisite:Media2 Service is received from the DUT. Event Service was received from the DUT.
Media2_AAC feature is supported by DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Encoder Configurations list by following the procedure
mentioned in Annex A.20 with the following input and output parameters

» out audioEncoderConfList - Audio Encoder Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

+ in "tns1:Media/ConfigurationChanged" - Notification Topic

* out s - Subscription Reference

L]

out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time

5. Foreach Audio Encoder Configuration audioEncoderConfiguration in audioEncoderConfList
repeat the following steps:

5.1. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with
parameters

» ConfigurationToken := audioEncoderConfiguration.@token

122 www.onvif.org

5.2.

5.3.

OnviF | empnggre

« ProfileToken skipped

DUT responds with GetAudioEncoderConfigurationOptionsResponse message
with parameters

» Options list =: optionsList

If optionsList contains an item with Encoding = MP4A-LATM or MPEG4-GENERIC, do
the following steps:

5.3.1. Set options := first item from optionsList with Encoding = MP4A-LATM or
MPEG4-GENERIC.

5.3.2. ONVIF Client invokes SetAudioEncoderConfiguration request with
parameters

+ Configuration.@token := audioEncoderConfiguration.@token

+ Configuration.Name = string different from
audioEncoderConfiguration.Name value (length shall be less than or equal
to 64 characters and it shall contain only readable characters)

+ Configuration.Encoding := options.Encoding

+ Configuration.Bitrate := minimum value from options.BitratelList.ltems
list if options.BitrateList.ltems list contains items, otherwise,
audioEncoderConfiguration.Bitrate

+ Configuration.SampleRate = minimum value from
options.SampleRateList.ltems list if options.SampleRateList.ltems list
contains items, otherwise, audioEncoderConfiguration.SampleRate

» Configuration.Multicast := audioEncoderConfiguration.Multicast
5.3.3. DUT responds with SetAudioEncoderConfigurationResponse message.

5.3.4. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Medial/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

www.onvif.org 123

ONVIE® | imsgres

* in terminationTime - subscription termination time

* in audioEncoderConfiguration.@token - Configuration token
* in AudioEncoder - Configuration Type

5.3.5. ONVIF Client invokes GetAudioEncoderConfigurations request with
parameters

+ ConfigurationToken := audioEncoderConfiguration.@token
* ProfileToken skipped

5.3.6. The DUT responds with GetAudioEncoderConfigurationsResponse with
parameters

» Configurations list =: audioEncoderConfList

5.3.7. If audioEncoderConfList contains more items with @token =
audioEncoderConfiguration.@token than 1, FAIL the test and skip other steps.

5.3.8. If audioEncoderConfList[0] is not equal to Configuration from step 5.3.2, FAIL
the test and skip other steps.

5.3.9. ONVIF Client invokes SetAudioEncoderConfiguration request with
parameters

+ Configuration.@token := audioEncoderConfiguration.@token
» Configuration.Name := audioEncoderConfiguration.Name
» Configuration.Encoding := options.Encoding

» Configuration.Bitrate := maximum value from options.BitrateList.ltems
list if options.BitrateList.ltems list contains items, otherwise,
audioEncoderConfiguration.Bitrate

» Configuration.SampleRate = maximum value from
options.SampleRateList.ltems list if options.SampleRateList.ltems list
contains items, otherwise, audioEncoderConfiguration.SampleRate

+ Configuration.Multicast := audioEncoderConfiguration.Multicast

5.3.10. DUT responds with SetAudioEncoderConfigurationResponse message.

124 www.onvif.org

6.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

5.3.11. If DUT supports Pull-Point Notification feature and Configuration Changed

Notification feature, ONVIF Client retrieves and checks tns1:Medial/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference

in currentTime - current time for the DUT
* in terminationTime - subscription termination time

* in audioEncoderConfiguration.@token - Configuration token

in AudioEncoder - Configuration Type

5.3.12. ONVIF Client invokes GetAudioEncoderConfigurations request with
parameters

» ConfigurationToken := audioEncoderConfiguration.@token
* ProfileToken skipped

5.3.13. The DUT responds with GetAudioEncoderConfigurationsResponse with
parameters

» Configurations list =: audioEncoderConfList

5.3.14. If audioEncoderConfList contains more items with @token =
audioEncoderConfiguration.@token than 1, FAIL the test and skip other steps.

5.3.15. If audioEncoderConfList{0] is not equal to Configuration from step 5.3.9, FAIL
the test and skip other steps.

If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference

Test Result:

PASS -

* DUT passes all assertions.

FAIL —

www.onvif.org 125

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ DUT did not send GetAudioSourceConfigurationOptionsResponse message.

Note: The following fields are compared at step 5.3.8 and 5.3.15:
* @token
* Name
* Encoding
* Multicast.Address.Type
* Multicast.Address.|IPv4Address
» Multicast.Address.IPv6Address
* Multicast.Port
» Multicast. TTL
» Multicast.AutoStart
+ Bitrate

+ SampleRate

5.3.2.3 GET AUDIO ENCODER CONFIGURATION OPTIONS

Test Case ID: MEDIA2-3-2-3

Specification Coverage: Get configuration options.
Feature Under Test: GetAudioEncoderConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving Audio Encoder Configuration Options for specified Audio Encoder
Configuration, for specified Profile, generic for the Device.

Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with parameters

» ConfigurationToken skipped

126 www.onvif.org

OnNViIF? | gogegeco

« ProfileToken skipped

. DUT responds with GetAudioEncoderConfigurationOptionsResponse message with
parameters

» Options =: options

. ONVIF Client retrieves Audio Encoder Configurations list by following the procedure
mentioned in Annex A.20 with the following input and output parameters

» out audioEncoderConfList - Audio Encoder Configurations list
. For each Audio Encoder Configuration (audioEncoderConf) in audioEncoderConfList

6.1. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with
parameters

» ConfigurationToken := audioEncoderConf.@token
* ProfileToken skipped

6.2. DUT responds with GetAudioEncoderConfigurationOptionsResponse message
with parameters

» Options =: options

. ONVIF Client invokes GetProfiles request with parameters

* Token skipped

» Type : = AudioSource

. The DUT responds with GetProfilesResponse message with parameters

» Profiles list =: profileList

. For each Profile (profile) in profileList that contains Configurations.AudioSource

9.1. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with
parameters

» ConfigurationToken skipped
* ProfileToken := profile.@token

9.2. DUT responds with GetAudioEncoderConfigurationOptionsResponse message
with parameters

www.onvif.org 127

IP Cannectivity

ONVIE® | imsgres

» Options =: options
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioEncoderConfigurationOptionsResponse message.

* DUT did not send GetProfilesResponse message.

5.3.2.4 AUDIO ENCODER CONFIGURATIONS AND AUDIO
ENCODER CONFIGURATION OPTIONS CONSISTENCY
Test Case ID: MEDIA2-3-2-4

Specification Coverage: Get configurations, Get configuration options, Audio encoder
configuration.

Feature Under Test: GetProfiles, GetAudioEncoderConfigurations
WSDL Reference: media2.wsdl

Test Purpose: To verify all Audio Encoder Configurations are consistent with Audio Encoder
Configuration Options.

Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Encoder Configurations list by following the procedure
mentioned in Annex A.20 with the following input and output parameters

* out audioEncoderConfList - Audio Encoder Configurations list

4. Foreach Audio Encoder Configuration audioEncoderConfiguration in audioEncoderConfList
repeat the following steps:

128 www.onvif.org

OnviF | empnggre

4.1. ONVIF Client invokes GetAudioEncoderConfigurationOptions request with
parameters

» ConfigurationToken := audioEncoderConfiguration.@token
 ProfileToken skipped

4.2. DUT responds with GetAudioEncoderConfigurationOptionsResponse message
with parameters

» Options List=: optionsList

4.3. |If optionsList does not contain at least one Options.Encoding element with value is
equal to audioEncoderConfiguration.Encoding, FAIL the test and skip other steps.

4.4. If optionsList does not contain at least one Options.Encoding element
with value is equal to audioEncoderConfiguration.Encoding and with
at least one Options.BitrateList.ltems element with value is equal to
audioEncoderConfiguration.Bitrate, FAIL the test and skip other steps.

45. If optionsList does not contain at least one Options.Encoding element
with value is equal to audioEncoderConfiguration.Encoding and with at
least one Options.SampleRateList.ltems element with value is equal to
audioEncoderConfiguration.SampleRate, FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioEncoderConfigurationOptionsResponse message.

5.3.3 Audio Output Configuration

5.3.3.1 GET AUDIO OUTPUT CONFIGURATION OPTIONS

Test Case ID: MEDIA2-3-3-1
Specification Coverage: Get configuration options, Audio output configuration.
Feature Under Test: GetAudioOutputConfigurationOptions

WSDL Reference: media2.wsdl

www.onvif.org 129

OnviF | empnggre

Test Purpose: To verify retrieving Audio Output Configuration options for specified Audio Output

Configuration, for specified Profile, generic for the Device.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken skipped
» ProfileToken skipped

4. DUT responds with GetAudioOutputConfigurationOptionsResponse message with
parameters

» Options =: options

5. If options.OutputLevelRange.Min > options.OutputLevelRange.Max, FAIL the test and skip
other steps.

6. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

» out audioOutputConfList - Audio Output Configurations list

7. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken := audioOutputConfList[0].@token
» ProfileToken skipped

8. DUT responds with GetAudioOutputConfigurationOptionsResponse message with
parameters

* Options =: options

9. ONVIF Client retrieves Media Profile, which contains Audio Output Configuration by
following the procedure mentioned in Annex A.21 with the following input and output
parameters

* out profile - Media Profile with Audio Output Configuration

130 www.onvif.org

OnviF | empnggre

10.ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters

» ConfigurationToken skipped
» ProfileToken := profile.@token

11.DUT responds with GetAudioOutputConfigurationOptionsResponse message with
parameters

» Options =: options
12.1f Media Profile profile was changed at step 9, ONVIF Client restores Media Profile.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

5.3.3.2 GET AUDIO OUTPUT CONFIGURATIONS

Test Case ID: MEDIA2-3-3-2

Specification Coverage: Get configurations, Audio output configuration.
Feature Under Test: GetAudioOutputConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Audio Output Configuration List, Audio Output
Configuration by Configuration token and compatible Audio Output Configuration by Profile token.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioOutputConfigurations request with parameters

» ConfigurationToken skipped

www.onvif.org 131

OnviF | empnggre

» ProfileToken skipped

4. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
» Configurations list =: audioOutputConfCompleteList

5. If audioOutputConfCompleteList is empty, FAIL the test and skip other steps.

6. If audioOutputConfCompleteList contains at least two items with the same @token, FAIL
the test and skip other steps.

7. For each Audio Output Configuration audioOutputConfiguration in
audioOutputConfCompleteList repeat the following steps:

7.1. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken := audioOutputConfiguration.@token
* ProfileToken skipped

7.2. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
+ Configurations list =: audioOutputConfList

7.3. If audioOutputConfList is empty, FAIL the test and skip other steps.

7.4. If audioOutputConfList contains more than one item, FAIL the test and skip other steps.

7.5. If audioOutputConfList does not contain item with @token =
audioOutputConfiguration.@token, FAIL the test and skip other steps.

8. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := AudioOutput
9. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
10.For each Media Profile profile in profileList repeat the following steps:
10.1. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken skipped

* ProfileToken := profile.@token

132 www.onvif.org

OnviF | empnggre

10.2. The DUT responds with GetAudioOutputConfigurationsResponse with parameters

» Configurations list =: audioOutputConfList

10.3. If audioOutputConfList contains at least two items with the same @token, FAIL the
test and skip other steps.

10.4. If audioOutputConfCompleteList does not contain at least one item with @token from
audioOutputConfList, FAIL the test and skip other steps.

10.5. If profile.Configurations contains AudioOutput:

10.5.1. If audioOutputConfList does not contain item with @token =
profile.Configurations.AudioOutput.@token, FAIL the test and skip other
steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

» DUT did not send GetProfilesResponse message.

5.3.3.3 AUDIO OUTPUT CONFIGURATIONS AND AUDIO
OUTPUT CONFIGURATION OPTIONS CONSISTENCY

Test Case ID: MEDIA2-3-3-3

Specification Coverage: Get configurations, Get configuration options, Audio output configuration.
Feature Under Test: GetProfiles, GetAidioOutputConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify all Audio Output Configurations are consistent with Audio Output
Configuration Options.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT

www.onvif.org 133

ONVIE® | imsgres

Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

* out audioOutputConfList - Audio Output Configurations list

4. For each Audio Output Configuration audioOutputConfiguration in audioOutputConfList
repeat the following steps:

4.1. ONVIF Client invokes GetAudioOutputConfigurationOptions request with
parameters

» ConfigurationToken := audioOutputConfiguration.@token
+ ProfileToken skipped

4.2. DUT responds with GetAudioOutputConfigurationOptionsResponse message
with parameters

» Options =: options

4.3. If audioOutputConfiguration.OutputToken is not in options.OutputTokensAvailable list,
FAIL the test and skip other steps.

4.4. If audioOutputConfiguration.SendPrimacy specified:

441, If audioOutputConfiguration.SendPrimacy is not in
options.SendPrimacyOptions, FAIL the test and skip other steps

4.5. If audioOutputConfiguration.OutputLevel < options.OutputLevelRange.Min, FAIL the
test and skip other steps.

4.6. If audioOutputConfiguration.OutputLevel > options.OutputLevelRange.Max, FAIL the
test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

134 www.onvif.org

OnviF | empnggre

5.3.3.4 PROFILES AND AUDIO OUTPUT CONFIGURATIONS
CONSISTENCY

Test Case ID: MEDIA2-3-3-4

Specification Coverage: Get configurations, Get media profiles, Audio output configuration.
Feature Under Test: GetAudioOutputConfigurations, GetAudioOutputConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all Media Profiles are consistent with Audio Output Configurations.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := AudioOutput
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. For each Media Profile profile in profileList which contains Configurations.AudioOutput
repeat the following steps:

5.1. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken := profile.Configurations.AudioOutput. @token
» ProfileToken skipped

5.2. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
» Configurations list =: audioOutputConfList

5.3. If audioOutputConfList[0] is not equal to profile.Configurations.AudioOutput, FAIL the
test and skip other steps.

www.onvif.org 135

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioOutputConfigurationsResponse message.
* DUT did not send GetProfilesResponse message.
Note: The following fields are compared at step 5.3:
* Name
» QutputToken
» SendPrimacy

* OutputLevel

5.3.3.5 MODIFY ALL SUPPORTED AUDIO OUTPUT
CONFIGURATIONS
Test Case ID: MEDIA2-3-3-5

Specification Coverage: Get configurations, Get configuration options, Audio output configuration,
Modify a configuration.

Feature Under Test: GetAudioOutputConfigurationOptions, GetAudioOutputConfigurations,
SetAudioOutputConfiguration

WSDL Reference: media2.wsdl
Test Purpose: To verify whether all supported Audio Output Configuration Options can be set.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

136 www.onvif.org

4.

OnviF | empnggre

» out audioOutputConfList - Audio Output Configurations list

If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

+ in "tns1:Media/ConfigurationChanged" - Notification Topic

» out s - Subscription reference

out currentTime - current time for the DUT
* out terminationTime - Subscription termination time

For each Audio Output Configuration audioOutputConfiguration in audioOutputConfList
repeat the following steps:

5.1. ONVIF Client invokes GetAudioOutputConfigurationOptions request with
parameters

» ConfigurationToken := audioOutputConfiguration.@token
* ProfileToken skipped

5.2. DUT responds with GetAudioOutputConfigurationOptionsResponse message
with parameters

» Options =: options
5.3. ONVIF Client invokes SetAudioOutputConfiguration request with parameters
+ Configuration.@token := audioOutputConfiguration.@token
» Configuration.Name := "TestName1"
» Configuration.OutputToken := first value from options.OutputTokensAvailable list

» Configuration.SendPrimacy := if options.SendPrimacyOptions is specified,
set first value from options.SendPrimacyOptions list, otherwise, set
audioOutputConfiguration.SendPrimacy

+ Configuration.OutputLevel := options.OutputLevelRange.Min
5.4. DUT responds with SetAudioOutputConfigurationResponse message.

5.5. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged

www.onvif.org 137

OnviF | empnggre

event for the specified Configuration by following the procedure mentioned in Annex

A.14 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in audioOutputConfiguration.@token - Configuration token
* in AudioOutput - Configuration Type
5.6. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken := audioOutputConfiguration.@token
 ProfileToken skipped
5.7. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
» Configurations list =: audioOutputConfList

5.8. If audioOutputConfList[0] is not equal to Configuration from step 5.3, FAIL the test and
skip other steps.

5.9. ONVIF Client invokes SetAudioOutputConfiguration request with parameters
+ Configuration.@token := audioOutputConfiguration.@token
» Configuration.Name := "TestName2"
» Configuration.OutputToken := last value from options.OutputTokensAvailable list

» Configuration.SendPrimacy := if options.SendPrimacyOptions is specified,
set last value from options.SendPrimacyOptions list, otherwise, set
audioOutputConfiguration.SendPrimacy

» Configuration.OutputLevel := options.OutputLevelRange.Max
5.10. DUT responds with SetAudioOutputConfigurationResponse message.

5.11. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

138 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in audioOutputConfiguration.@token - Configuration token
* in AudioOutput - Configuration Type
5.12. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken := audioOutputConfiguration.@token
* ProfileToken skipped
5.13. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
+ Configurations list =: audioOutputConfList

5.14. If audioOutputConfList[0] is not equal to Configuration from step 5.9, FAIL the test and
skip other steps.

5.15. ONVIF Client restores settings of Audio Output Configuration with @token =
audioOutputConfiguration.@token.

6. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetAudioOutputConfigurationsResponse message.
* DUT did not send SetAudioOutputConfigurationResponse message.
» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

Note: The following fields are compared at steps 5.8 and 5.14:

www.onvif.org 139

O n VI F ® | Standardizing IP Connectivity
for Physical Security

OutputToken
+ Name
+ SendPrimacy

* OutputLevel

5.3.3.6 GET AUDIO OUTPUT CONFIGURATIONS — INVALID
TOKEN

Test Case ID: MEDIA2-3-3-6

Specification Coverage: Get configurations, Audio output configuration.
Feature Under Test: GetAudioOutputConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetAudioOutputConfigurations with
invalid token.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

» out audioOutputConfList - Audio Output Configurations list

4. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken := other than listed in audioOutputConfList
» ProfileToken skipped

5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.

140 www.onvif.org

ONVIE® | imsgres

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault

message.

5.3.4 Audio Decoder Configuration

5.3.4.1 GET AUDIO DECODER CONFIGURATION OPTIONS

Test Case ID: MEDIA2-3-4-1

Specification Coverage: Get configuration options, Audio decoder configuration.
Feature Under Test: GetAudioDecoderConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving Audio Decoder Configuration options for specified Audio Decoder
Configuration, for specified Profile, generic for the Device.

Pre-Requisite:Media2 Service is received from the DUT. Audio Outputs is supported by Device
as indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability. Audio
Decoder is supported by Device as indicated by the ProfileCapabilities.ConfigurationsSupported =
AudioDecoder capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioDecoderConfigurationOptions request with parameters
» ConfigurationToken skipped

« ProfileToken skipped

www.onvif.org 141

ONVIE® | imsgres

4. DUT responds with GetAudioDecoderConfigurationOptionsResponse message with

parameters
» Options list =: optionsList

5. ONVIF Client retrieves Audio Decoder Configurations list by following the procedure
mentioned in Annex A.22 with the following input and output parameters

* out audioDecoderConfList - Audio Decoder Configurations list

6. ONVIF Client invokes GetAudioDecoderConfigurationOptions request with parameters
» ConfigurationToken := audioDecoderConfList{0].@token
» ProfileToken skipped

7. DUT responds with GetAudioDecoderConfigurationOptionsResponse message with
parameters

* Options list =: optionsList

8. ONVIF Client configures Media Profile containing Audio Output Configuration and Audio
Decoder Configuration by following the procedure mentioned in Annex A.23 with the
following input and output parameters

» out profile - Media Profile containing Audio Output Configuration and Audio Decoder
Configuration

9. ONVIF Client invokes GetAudioDecoderConfigurationOptions request with parameters
» ConfigurationToken skipped
» ProfileToken := profile.@token

10.DUT responds with GetAudioDecoderConfigurationOptionsResponse message with
parameters

» Options list =: optionsList
11. If Media Profile profile was changed at step 8, ONVIF Client restores Media Profile.
Test Result:
PASS -
* DUT passes all assertions.

FAIL —

142 www.onvif.org

OnviF | empnggre

+ DUT did not send GetAudioDecoderConfigurationOptionsResponse message.

5.3.4.2 GET AUDIO DECODER CONFIGURATIONS

Test Case ID: MEDIA2-3-4-2

Specification Coverage: Get configurations, Audio decoder configuration.
Feature Under Test: GetAudioDecoderConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Audio Decoder Configuration List, Audio Decoder
Configuration by Configuration token and compatible Audio Decoder Configuration by Profile token.

Pre-Requisite:Media2 Service is received from the DUT. Audio decoder is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioDecoder capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
4. The DUT responds with GetAudioDecoderConfigurationsResponse with parameters
» Configurations list =: audioDecoderConfCompleteList
5. If audioDecoderConfCompleteList is empty, FAIL the test and skip other steps.

6. If audioDecoderConfCompletelList contains at least two items with the same @token, FAIL
the test and skip other steps.

7. For each Audio Decoder Configuration audioDecoderConfiguration in
audioDecoderConfCompleteList repeat the following steps:

7.1. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters

www.onvif.org 143

144

9.

10

ONVIE® | imsgres

» ConfigurationToken := audioDecoderConfiguration.@token

* ProfileToken skipped

7.2. The DUT responds with GetAudioDecoderConfigurationsResponse with
parameters

» Configurations list =: audioDecoderConfList
7.3. If audioDecoderConfList is empty, FAIL the test and skip other steps.

7.4. If audioDecoderConfList contains more than one item, FAIL the test and skip other
steps.

7.5. If audioDecoderConfList does not contain item with @token =
audioDecoderConfiguration.@token, FAIL the test and skip other steps.

ONVIF Client invokes GetProfiles request with parameters

» Token skipped

* Type[0] := AudioDecoder

The DUT responds with GetProfilesResponse message with parameters

» Profiles list =: profileList

.For each Media Profile profile in profileList repeat the following steps:

10.1. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken := profile.@token

10.2. The DUT responds with GetAudioDecoderConfigurationsResponse with
parameters

» Configurations list =: audioDecoderConfList

10.3. If audioDecoderConfList contains at least two items with the same @token, FAIL the
test and skip other steps.

10.4. If audioDecoderConfCompleteList does not contain at least one item with @token from
audioDecoderConfList, FAIL the test and skip other steps.

10.5. If profile.Configurations contains AudioDecoder:

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

10.5.1. If audioDecoderConfList does not contain item with @token =

profile.Configurations.AudioDecoder.@token, FAIL the test and skip other
steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioDecoderConfigurationsResponse message.

» DUT did not send GetProfilesResponse message.

5.3.4.3 PROFILES AND AUDIO DECODER CONFIGURATIONS
CONSISTENCY

Test Case ID: MEDIA2-3-4-3

Specification Coverage: Get configurations, Get media profiles, Audio decoder configuration.
Feature Under Test: GetAudioDecoderConfigurations, GetAudioDecoderConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify all Media Profiles are consistent with Audio Decoder Configurations.

Pre-Requisite:Media2 Service is received from the DUT. Audio Decoder is supported by Device
as indicated by the ProfileCapabilities.ConfigurationsSupported = AudioDecoder capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped

* Type[0] := AudioDecoder

www.onvif.org 145

ONVIE® | imsgres

4. The DUT responds with GetProfilesResponse message with parameters

* Profiles list =: profileList

5. For each Media Profile profile in profileList which contains Configurations.AudioDecoder
repeat the following steps:

5.1. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
Note: The following fields are compared at step 5.3:

» ConfigurationToken := profile.Configurations.AudioDecoder.@token
* ProfileToken skipped

5.2. The DUT responds with GetAudioDecoderConfigurationsResponse with
parameters Note: The following fields are compared at step 5.3:

» Configurations list =: audioDecoderConfList

5.3. If audioDecoderConfList[0] is not equal to profile.Configurations.AudioDecoder, FAIL
the test and skip other steps.

Test Result:

PASS -
* DUT passes all assertions.

FAIL -
+ DUT did not send GetAudioDecoderConfigurationsResponse message.
* DUT did not send GetProfilesResponse message.

Note: The following fields are compared at step 5.3:

« Name

5.3.4.4 MODIFY ALL SUPPORTED AUDIO DECODER
CONFIGURATIONS

Test Case ID: MEDIA2-3-4-4
Specification Coverage: Get configurations, Audio decoder configuration, Modify a configuration

Feature Under Test: GetAudioDecoderConfigurations, SetAudioDecoderConfiguration

146 www.onvif.org

OnviF | empnggre

WSDL Reference: media2.wsdl
Test Purpose: To verify change of Audio Decoder Configuration.

Pre-Requisite:Media2 Service is received from the DUT. Event Service was received
from the DUT. Audio Decoder is supported by Device as indicated by the
ProfileCapabilities.ConfigurationsSupported = AudioDecoder capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Decoder Configurations list by following the procedure
mentioned in Annex A.22 with the following input and output parameters

» out audioDecoderConfList - Audio Decoder Configurations list

4. For each Audio Decoder Configuration audioDecoderConfiguration in
audioDecoderConfList repeat the following steps:

4.1. ONVIF Client invokes SetAudioDecoderConfiguration request with parameters
» Configuration.@token := audioDecoderConfiguration.@token
» Configuration.Name := "TestName1"
4.2. DUT responds with SetAudioDecoderConfigurationResponse message.
4.3. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
» ConfigurationToken := audioDecoderConfiguration.@token
* ProfileToken := audioDecoderConfiguration

44. The DUT responds with GetAudioDecoderConfigurationsResponse with
parameters

» Configurations list =: audioDecoderConfList

4.5. If audioDecoderConfList[0] is not equal to Configuration from step 4.1, FAIL the test
and skip other steps.

4.6. ONVIF Client restores settings of Audio Decoder Configuration with @token =
audioDecoderConfiguration.@token.

www.onvif.org 147

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioDecoderConfigurationsResponse message.
+ DUT did not send SetAudioDecoderConfigurationResponse message.
Note: The following fields are compared at step 4.5:

« Name

5.3.4.5 GET AUDIO DECODER CONFIGURATIONS — INVALID
TOKEN

Test Case ID: MEDIA2-3-4-5

Specification Coverage: Get configurations, Audio decoder configuration.
Feature Under Test: GetAudioDecoderConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetAudioDecoderConfigurations
with invalid token.

Pre-Requisite:Media2 Service is received from the DUT. Audio Decoder is supported by Device
as indicated by the ProfileCapabilities.ConfigurationsSupported = AudioDecoder capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Audio Decoder Configurations list by following the procedure
mentioned in Annex A.22 with the following input and output parameters

» out audioDecoderConfList - Audio Decoder Configurations list

148 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters

» ConfigurationToken := other than listed in audioDecoderConfList
» ProfileToken skipped
5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.
Test Result:
PASS -
+ DUT passes all assertions.
FAIL -

+ The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault
message.

5.4 PTZ Configuration

5.4.1 READY TO USE MEDIA PROFILE FOR PTZ

Test Case ID: MEDIA2-4-1-1

Specification Coverage: Absolute PTZ Move (Profile T) or Continuous PTZ Move (Profile T),
Media profiles (Media 2), PTZ Configuration (Media 2)

Feature Under Test: GetProfiles
WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT has a ready-to-use Media Service 2.0 Profile for PTZ.
Pre-Requisite: Media2 Service is received from the DUT. PTZ Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client invokes GetProfiles request with parameters

www.onvif.org 149

OnviF | empnggre

* Token skipped
» Type[0] := VideoSource
» Type[1] :=PTZ
4. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

5. If profileList contains no Media Profiles with both Configurations.VideoSource and
Configurations.PTZ, FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send GetProfilesResponse message.

5.4.2 DYNAMIC MEDIA PROFILE CONFIGURATION FOR
PTZ

Test Case ID: MEDIA2-4-1-2

Specification Coverage: Get media profiles, Create media profile, Delete media profile, Add
one or more configurations to a profile, Remove one or more configurations from a profile, Get
configurations, GetConfigurations (PTZ Service), GetCompatibleConfigurations (PTZ Service).

Feature Under Test: GetProfiles, AddConfiguration for PTZ Configuration,
RemoveConfiguration for PTZ Configuration, GetVideoSourceConfigurations, GetConfigurations,
GetCompatibleConfigurations, SetConfiguration, tns1:Media/ProfileChanged, tns1:Media/
ConfigurationChanged

WSDL Reference: media2.wsdl
Test Purpose: To verify the behavior of the DUT for dynamic media profile configuration with PTZ.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the DUT.
PTZ Service was received from the DUT. GetCompatibleConfigurations is supported by Device as
indicated by the GetCompatibleConfigurations = true capability.

150 www.onvif.org

ONVIE® | imsgres

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := VideoSource
» Type[1] :=PTZ
4. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

5. For each Media Profile profile in profileList, which contains Configurations.VideoSource
repeat the following steps:

5.1. If profile.Configurations contains PTZ repeat the following steps:
5.1.1. ONVIF Client invokes RemoveConfiguration request with parameters
» ProfileToken := profile Token
» Configuration[0].Type := PTZ
» Configuration[0].Token skipped
5.1.2. The DUT responds with RemoveConfigurationResponse message.

6. If DUT supports Pull-Point Notification feature and (Profile Changed Notification or
Configuration Changed Notification feature), ONVIF Client creates PullPoint subscription for
the specified topic by following the procedure mentioned in Annex A.4 with the following
input and output parameters

* in "tns1:Media/ProfileChanged|tns1:Media/ConfigurationChanged" - Notification
Topic if both Profile Changed Notification and Configuration Changed Notification features
are supported. Otherwise only supported topic is used as Notification Topic.

* out s - Subscription reference

« out currentTime - current time for the DUT

www.onvif.org 151

ONVIE® | imsgres

» out terminationTime - Subscription termination time

7. For each Media Profile profile in profileList, which contains Configurations.VideoSource
repeat the following steps:

7.1. ONVIF Client invokes GetCompatibleConfigurations request with parameters
 ProfileToken := profile Token

7.2. The DUT responds with GetCompatibleConfigurationsResponse request with
parameters

» PTZConfiguration list =: ptzConfigurationList

7.3. For each PTZ Configuration ptzConfiguration in ptzConfigurationList repeat the
following steps:

7.3.1. ONVIF Client invokes AddConfiguration request with parameters

ProfileToken := profile Token

* Name skipped

Configuration[0]. Type := PTZ

Configuration[0].Token := ptzConfiguration.@token
7.3.2. The DUT responds with AddConfigurationResponse message.

7.3.3. IfDUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile by following the procedure mentioned in
Annex A.5 with the following input and output parameters

* in s - Subscription reference

in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in profile Token - Media Profile token
7.3.4. ONVIF Client invokes GetConfigurationOptions request with parameters

» ConfigurationToken := ptzConfiguration.@token

152 www.onvif.org

OnviF: | wsmasggres

7.3.5. DUT responds with GetConfigurationOptionsResponse message with
parameters

» PTZConfigurationOptions =: ptzOptions

7.3.6. If ptzOptions.Spaces contains at least two AbsolutePanTiltPositionSpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.7. If ptzOptions.Spaces contains at least two AbsoluteZoomPositionSpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.8. If ptzOptions.Spaces contains at least two RelativePanTiltTranslationSpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.9. If ptzOptions.Spaces contains at least two RelativeZoomTranslationSpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.10. If ptzOptions.Spaces contains at least two ContinuousPanTiltVelocitySpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.11. If ptzOptions.Spaces contains at least two ContinuousZoomVelocitySpace
elements with equal URI values, FAIL the test and skip other steps.

7.3.12. ONVIF Client invokes SetConfiguration request with parameters
+ PTZConfiguration.@token := ptzConfiguration.@token

» PTZConfiguration.Name := "TestNameN" (N is number that increases for
each iteration of cycle beginning from 0)

» PTZConfiguration.UseCount ;= ptzConfiguration.UseCount

+ PTZConfiguration.MoveRamp skipped

» PTZConfiguration.PresetRamp skipped

+ PTZConfiguration.PresetTourRamp skipped

» PTZConfiguration.NodeToken := ptzConfiguration.NodeToken
* If ptzOptions.Spaces contains AbsolutePanTiltPositionSpace:

» PTZConfiguration.DefaultAbsolutePantTiltPositionSpace =
ptzOptions.Spaces.AbsolutePanTiltPositionSpace.URI from first
other then current (if possible) item from
ptzOptions.Spaces.AbsolutePanTiltPositionSpace list

www.onvif.org 153

OnviF | empnggre

otherwise, PTZConfiguration.DefaultAbsolutePantTiltPositionSpace

skipped
« If ptzOptions.Spaces contains AbsoluteZoomPositionSpace:

» PTZConfiguration.DefaultAbsoluteZoomPositionSpace =
ptzOptions.Spaces.AbsoluteZoomPositionSpace.URI from first
other then current (if possible) item form
ptzOptions.Spaces.AbsoluteZoomPositionSpace list

otherwise, PTZConfiguration.DefaultAbsoluteZoomPositionSpace skipped
* If ptzOptions.Spaces contains RelativePanTiltTranslationSpace:

» PTZConfiguration.DefaultRelativePanTiltTranslationSpace =
ptzOptions.Spaces.RelativePanTiltTranslationSpace.URI from first
other then current (if possible) item from
ptzOptions.Spaces.RelativePanTiltTranslationSpace list

otherwise, PTZConfiguration.DefaultRelativePanTiltTranslationSpace
skipped

+ If ptzOptions.Spaces contains RelativeZoomTranslationSpace:

» PTZConfiguration.DefaultRelativeZoomTranslationSpace =
ptzOptions.Spaces.RelativeZoomTranslationSpace.URI from first
other then current (if possible) item from
ptzOptions.Spaces.RelativeZoomTranslationSpace list

otherwise, PTZConfiguration.DefaultRelativeZoomTranslationSpace
skipped

« If ptzOptions.Spaces contains ContinuousPanTiltVelocitySpace:

» PTZConfiguration.DefaultContinuousPanTiltVelocitySpace =
ptzOptions.Spaces.ContinuousPanTiltVelocitySpace.URI from first
other then current (if possible) item from
ptzOptions.Spaces.ContinuousPanTiltVelocitySpace list

otherwise, PTZConfiguration.DefaultContinuousPanTiltVelocitySpace
skipped

* If ptzOptions.Spaces contains ContinuousZoomVelocitySpace:

154 www.onvif.org

Standardizing IP Connectivity
for Physical Security

* PTZConfiguration.DefaultContinuousZoomVelocitySpace =
ptzOptions.Spaces.ContinuousZoomVelocitySpace.URI from first
other then current (if possible) item from
ptzOptions.Spaces.ContinuousZoomVelocitySpace list

otherwise, PTZConfiguration.DefaultContinuousZoomVelocitySpace
skipped

+ If ptzOptions.Spaces contains PanTiltSpeedSpace or ZoomSpeedSpace:
* If ptzOptions.Spaces contains PanTiltSpeedSpace:

* PTZConfiguration.DefaultPTZSpeed.PanTilt.space =
ptzOptions.Spaces.PanTiltSpeedSpace.URI from first other then
current (if possible) item from pfzOptions.Spaces.PanTiltSpeedSpace

* PTZConfiguration.DefaultPTZSpeed.PanTilt.x =
ptzOptions.Spaces.PanTiltSpeedSpace.XRange.Max from the same
item from ptzOptions.Spaces.PanTiltSpeedSpace as was used for
PTZConfiguration.DefaultPTZSpeed.PanTilt.space

» PTZConfiguration.DefaultPTZSpeed.PanTilt.y =
ptzOptions.Spaces.PanTiltSpeedSpace.XRange.Min from the same
item from ptzOptions.Spaces.PanTiltSpeedSpace as was used for
PTZConfiguration.DefaultPTZSpeed.PanTilt.space

otherwise, PTZConfiguration.DefaultPTZSpeed.PanTilt skipped
* If ptzOptions.Spaces contains ZoomSpeedSpace:

» PTZConfiguration.DefaultPTZSpeed.Zoom.space =
ptzOptions.Spaces.ZoomSpeedSpace.URI from first other then current
(if possible) item from ptzOptions.Spaces.ZoomSpeedSpace

* PTZConfiguration.DefaultPTZSpeed.Zoom.x =
ptzOptions.Spaces.ZoomSpeedSpace.XRange.Max from the same
item from ptzOptions.Spaces.ZoomSpeedSpace as was used for
PTZConfiguration.DefaultPTZSpeed.Zoom.space

otherwise, PTZConfiguration.DefaultPTZSpeed.Zoom skipped
otherwise, PTZConfiguration.DefaultPTZSpeed skipped

* PTZConfiguration.DefaultPTZTimeout =: PTZTimeout.Min

www.onvif.org 155

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ PanTiltLimits skipped
» ZoomLimits skipped
» PTZConfiguration.PTControlDirection skipped
7.3.13. DUT responds with SetConfigurationResponse message.

7.3.14. If DUT supports Pull-Point Notification feature and Configuration Changed
Notification feature, ONVIF Client retrieves and checks tns1:Media/
ConfigurationChanged event for the specified Configuration by following
the procedure mentioned in Annex A.14 with the following input and output
parameters

* in s - Subscription reference
* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

in ptzConfiguration.@token - Configuration token
* in PTZ - Configuration Type

7.3.15. ONVIF Client invokes GetConfiguration request with parameters
+ PTZConfigurationToken := ptzConfiguration.@token

7.3.16. The DUT responds with GetConfigurationResponse with parameters
» PTZConfiguration =: ptzConfiguration

7.3.17. If ptzConfiguration is not equal to PTZConfiguration from step 6.3.6, FAIL the
test and skip other steps.

7.3.18. ONVIF Client invokes GetProfiles request with parameters
+ Token := profileToken
. Type[0] := All

7.3.19. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

7.3.20. If profileList is empty, FAIL the test and skip other steps.

156 www.onvif.org

ONVIE® | imsgres

7.3.21. If profileList contains more than one item, FAIL the test and skip other steps.

7.3.22. If profileList[0].@token != profile Token, FAIL the test and skip other steps.

7.3.23. If profileList[0].Configurations.PTZ.@token != ptzConfiguration.@token, FAIL
the test and skip other steps.

7.3.24. If profileList[0].Configurations.PTZ is not equal to PTZConfiguration from step
6.3.6, FAIL the test and skip other steps.

7.3.25. ONVIF Client invokes RemoveConfiguration request with parameters
+ ProfileToken := profile Token
+ Configuration[0].Type := PTZ
» Configuration[0]. Token skipped

7.3.26. The DUT responds with RemoveConfigurationResponse message.

7.3.27. If DUT supports Pull-Point Notification feature and Profile Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ProfileChanged
event for the specified Media Profile by following the procedure mentioned in
Annex A.5 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in profile Token - Media Profile token
7.3.28. ONVIF Client invokes GetProfiles request with parameters
» Token := profile Token
« Type[0] := PTZ
7.3.29. The DUT responds with GetProfilesResponse message with parameters
+ Profiles list =: profileList
7.3.30. If profileList is empty, FAIL the test and skip other steps.

7.3.31. If profileList contains more than one item, FAIL the test and skip other steps.

www.onvif.org 157

O n VI F ® | Standardizing IP Connectivity
for Physical Security

7.3.32. If profileList[0].Configurations contains PTZ, FAIL the test and skip other steps.

8. ONVIF Client restores Media Profiles and PTZ Configurations that were changed.

9. If subscription was created at step 6, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

+ DUT did not send GetProfilesResponse message.

» DUT did not send AddConfigurationResponse message.

* DUT did not send RemoveConfigurationResponse message.

+ DUT did not send GetCompatibleConfigurationsResponse message.

» DUT did not send SetConfigurationResponse message.
Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.
Note: The following fields are compared at steps 6.3.18 and 6.3.11:

* Name

* NodeToken

» DefaultAbsolutePantTiltPositionSpace

+ DefaultAbsoluteZoomPositionSpace

» DefaultRelativePanTiltTranslationSpace

+ DefaultRelativeZoomTranslationSpace

+ DefaultContinuousPanTiltVelocitySpace

» DefaultContinuousZoomVelocitySpace

» DefaultPTZSpeed.PanTilt.x

* DefaultPTZSpeed.PanTilt.y

158 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

DefaultPTZSpeed.PanTilt.space

» DefaultPTZSpeed.Zoom.x

DefaultPTZSpeed.Zoom.space

» DefaultPTZTimeout

5.5 Media Streaming

5.5.1 SNAPSHOT URI

Test Case ID: MEDIA2-5-1-1

Specification Coverage: Get media profiles, Request snapshot URI
Feature Under Test: GetSnapshotUri

WSDL Reference: media2.wsdl

Test Purpose: To retrieve snapshot URI of DUT for given media profile

Pre-Requisite: SnapshotUri feature for Media2 service is supported by the DUT. Media2 Service
is received from the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. If DUT supports Video feature

3.1. ONVIF Client configures Media Profile containing Video Source Configuration and
Video Encoder Configuration by following the procedure mentioned in Annex A.24 with
the following input and output parameters

+ out profile - Media Profile containing Video Source Configuration and Video Encoder
Configuration

4. If DUT does not support Video feature

4.1. ONVIF Client configures Media Profile containing Video Source Configuration by
following the procedure mentioned in Annex A.12 with the following input and output
parameters

www.onvif.org 159

OnviF | empnggre

 out profile - Media Profile containing Video Source Configuration

5. ONVIF Client invokes GetSnapshotUri request with parameters
» ProfileToken := profile.@token
6. DUT responds with GetSnapshotUriResponse message with parameters
e Uri =: snapshotUri
7. ONVIF Client invokes HTTP GET request on the snapshotUri.
8. DUT responds with HTTP 200 OK message and the single shot JPEG image data.
9. ONVIF Client verifies the JPEG image sent by the DUT.
10. If media profile profile was changed at step 3, ONVIF Client restores media profile.
Test Result:
PASS -
» DUT passes all assertions.
FAIL -
+ DUT did not send GetSnapshotUriResponse message.
» DUT did not send 200 OK message to HTTP GET request.

» DUT did not send valid JPEG image data.

5.5.2 VIDEO ENCODER INSTANCES PER VIDEO SOURCE

Test Case ID: MEDIA2-5-1-2

Specification Coverage: GetVideoEncoderinstances
Feature Under Test: GetVideoEncoderinstances
WSDL Reference: media2.wsdl, deviceio.wsdl

Test Purpose: To verify that for each video source there is at least one video source configuration
for which the GetVideoEncoderlnstances returns a Total greater than 0.

Pre-Requisite: Media2 Service is received from the DUT. Device IO Service is received from the
DUT. Video feature is supported by the DUT.

Test Configuration: ONVIF Client and DUT

160 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

4. ONVIF Client retrieves Video Sources list by following the procedure mentioned in Annex
A.18 with the following input and output parameters

» out videoSourcesList1 - Video Sources list
5. For each Video Source videoSource1 from videoSourcesList repeat the following steps:
5.1. Set totalGreaterThanZeroFlag := false.

5.2. For each Video Source Configuration videoSourceConfig1 with SourceToken =
videoSource1 from videoSourceConfList1 repeat the following steps:

5.2.1. ONVIF Client invokes GetVideoEncoderinstances request with parameters
+ ConfigurationToken := videoSourceConfig1.token

5.2.2. DUT responds with GetVideoEncoderinstancesResponse message with
parameters

* Info = info1
5.2.3. Ifinfo1.Total > 0:
5.2.3.1. Set totalGreaterThanZeroFlag := true.
5.2.3.2. Go to step 5.3.
5.3. If totalGreaterThanZeroFlag = false, FAIL the test and skip other steps.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetVideoSourcesResponse message.

www.onvif.org 161

OnviF | empnggre

« DUT did not send GetVideoEncoderinstancesResponse message.

5.6 OSD Configuration

5.6.1 CREATE OSD CONFIGURATION FOR TEXT OVERLAY

Test Case ID: MEDIA2-6-1-1
Specification Coverage: None

Feature Under Test: GetVideoSourceConfigurations, GetOSDs, GetOSDOptions, CreateOSD,
DeleteOSD

WSDL Reference: media2.wsdl
Test Purpose: To verify the DUT creates OSD Configuration.
Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Clientinvokes GetVideoSourceConfigurations message to retrieve a list of existing
Video Source Configurations on the DUT.

4. Verify that the DUT returns at least one Video Source Configuration in
the GetVideoSourceConfigurationsResponse message. For each Video Source
Configuration from GetVideoSourceConfigurationsResponse, ONVIF Client saves the
token of this configuration in VideoSourceConfigurationToken1 variable and runs the
following steps:

4.1. ONVIF Client invokes GetOSDs request with parameters
+ OSDToken - skipped
» ConfigurationToken := VideoSourceConfigurationToken1
4.2. The DUT responds with GetOSDsResponse with parameters
» OSDs list =: OSDConfigurationsList1

4.3. ONVIF Client invokes GetOSDOptions request with parameters

162 www.onvif.org

OnviF’ | wsmanggres

» ConfigurationToken := VideoSourceConfigurationToken1

4.4. DUT responds with GetOSDOptionsResponse message with parameters
» OSDOptions =: OSDOptions1

4.5. ONVIF Client checks if current Video Source Configuration supports OSD
configurations of the Type = Text. Otherwise, skip steps 4.6-4.25 and go to the next
Video Source Configuration.

4.6. SetosdTextStringType1 := OSDOptions1.TextOption.Type[0], where Type[0] is the 1st
in Type list from {Plain, Date, Time, DateAndTime} values

4.7. ONVIF Client configures Device to have free space to create OSD with Text type and
with required TextString Type by following the procedure mentioned in Annex A.25 with
the following input and output parameters

in OSDConfigurationsList1 - OSD Configurations List

* in 0sdOptions - OSD Options

in "Text" - OSD Type

out OSDConfigurationsList1 - updated OSD Configurations List

4.8. ONVIF Client invokes CreateOSD with token = "testOSD" (note:
this token can be ignored by DUT), VideoSourceConfigurationToken =
VideoSourceConfigurationToken1, Type="Text" and the rest of parameter are
populated using values from OSDOptions1. For this step, if the value has a range
of available values, then minimum value (or the first value from list if list of available
values is provided by DUT) from OSDOptions1 should be used. See details of fields
mapping in Annex A.28.

4.9. DUT creates OSD Configuration and sends CreateOSDResponse message. ONVIF
Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken1 variable.

4.10. ONVIF Client verifies that OSDConfigurationsList1 does not contain configuration with
token = OSDConfigurationToken1.

4.11. ONVIF Client invokes GetOSDs message with OSD Token =
OSDConfigurationToken1 as input parameter to retrieve newly created OSD
Configuration.

www.onvif.org 163

OnviF’ | wsmanggres

4.12. DUT sends OSD Configuration for the given token. ONVIF Client verifies that response

contains OSD Configuration with token = OSDConfigurationToken1 and configuration
fields equal to the fields set at 4.8 step.

4.13. ONVIF Client invokes DeleteOSD with OSD Token = OSDConfigurationToken1 as
input parameter.

4.14. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

4.15. Set osdTextStringType2 := OSDOptions1.TextOption.Type[0], where Type[0] is the last
in Type list from {Plain, Date, Time, DateAndTime} values

4.16. ONVIF Client invokes CreateOSD with token = "testOSD",
VideoSourceConfigurationToken = VideoSourceConfigurationToken1, Type="Text"
and the rest of parameters are populated using values from OSDOptions1. For this
step, if the value has a range of available values, then maximum value (or the last
value from list if list of available values is provided by DUT) from OSDOptions1 should
be used. See details of fields mapping in Annex A.28.

4.17. DUT created OSD Configuration and sends CreateOSDResponse message. ONVIF
Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken?2 variable.

4.18. ONVIF Client verifies that OSDConfigurationsList1 does not contain configuration with
token = OSDConfigurationToken?2.

4.19. ONVIF Client invokes GetOSDs message with configuration token =
OSDConfigurationsList1 as input parameter to retrieve the list of OSD Configurations,
which includes newly created OSD Configuration.

4.20. DUT sends GetOSDsResponse with a list of OSD Configurations. ONVIF
Client verifies that response contains OSD Configuration with token =
OSDConfigurationToken?2 and the fields of this configuration equal to the fields set at
step 4.15.

4.21. ONVIF Client invokes DeleteOSD with OSD Token = OSDConfigurationToken2 as
input parameter.

4.22. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

164 www.onvif.org

OnviF | empnggre

4.23. ONVIF Client invokes GetOSDs message with configuration token =

VideoSourceConfigurationToken1 as input parameter to retrieve the list of OSD
Configurations, which includes newly created OSD Configuration.

4.24. DUT sends GetOSDsResponse with a list of OSD Configurations. ONVIF
Client verifies that response does not contain OSD Configuration with token =
OSDConfigurationToken2.

4.25. If OSD Configuration was deleted at 4.7 [163] step, ONVIF Client restores OSD
Configuration.

Test Resulit:
PASS —
* DUT passes all assertions.

« DUT did not send at least one text overlay (Text Option is skipped) in
GetOSDOptionsResponse

FAIL -
» The DUT did not send GetVideoSourceConfigurationsResponse message.

+ The GetVideoSourceConfigurationsResponse does not contain at least one Video Source
configuration.

+ The DUT did not send GetOSDsResponse message.

* The DUT did not send GetOSDOptionsResponse message.
* The DUT did not send CreateOSDResponse message.

* The DUT did not send GetOSDResponse message.

« The DUT did not send DeleteOSDResponse message.

+ The GetOSDsResponse contains deleted OSD Configuration

5.6.2 CREATE OSD CONFIGURATION FOR IMAGE
OVERLAY

Test Case ID: MEDIA2-6-1-2

Specification Coverage: None

www.onvif.org 165

OnviF | empnggre

Feature Under Test: GetVideoSourceConfigurations, GetOSDs, GetOSDOptions, CreateOSD,
DeleteOSD

WSDL Reference: media2.wsdl
Test Purpose: To verify the DUT creates OSD Configuration.
Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Clientinvokes GetVideoSourceConfigurations message to retrieve a list of existing
Video Source Configurations on the DUT.

4. Verify that the DUT returns at least one Video Source Configuration in
the GetVideoSourceConfigurationsResponse message. For each Video Source
Configuration from GetVideoSourceConfigurationsResponse, ONVIF Client saves the
token of this configuration in VideoSourceConfigurationToken1 variable and runs steps 4.1
-4.24:

4.1. ONVIF Client invokes GetOSDs request with parameters
* OSDToken - skipped
» ConfigurationToken := VideoSourceConfigurationToken1
4.2. The DUT responds with GetOSDsResponse with parameters
» OSDs list =: OSDConfigurationsList1
4.3. ONVIF Client invokes GetOSDOptions request with parameters
» ConfigurationToken := VideoSourceConfiguration Token1
4.4. DUT responds with GetOSDOptionsResponse message with parameters
* OSDOptions =: OSDOptions1

4.5. ONVIF Client checks if current Video Source Configuration supports OSD
configurations of the Type = Image. Otherwise, skip steps 4.6 — 4.24 and go to the
next Video Source Configuration.

166 www.onvif.org

ONVIE® | imsgres

4.6. ONVIF Client configures Device to have free space to create OSD with Image type by
following the procedure mentioned in Annex A.25 with the following input and output
parameters

in OSDConfigurationsList1 - OSD Configurations List
* in 0sdOptions - OSD Options

* in "Image" - OSD Type

out OSDConfigurationsList1 - updated OSD Configurations List
4.7. If osdOptions.ImageOption contains FormatsSupported attribute:
4.7.1. SetimagePath1 := osdOptions.ImageOption.ImagePath[0]
4.7.2. ONVIF client invokes HTTP POST to imagePath1 with parameters
* HTTP Header [Content-Type] := "image/png"
* HTTP Body := PNG picture (see Annex A.29 for details)

4.7.3. The DUT responds with HTTP 200 OK message.

4.7.4. ONVIF Client waits timeout1.

4.7.5. If osdOptions.ImageOption contains more than one ImagePath:
4.7.5.1. SetimagePath2 := osdOptions.ImageOption.ImagePath[last]
4.7.5.2. ONVIF client invokes HTTP POST to imagePath2 with parameters

* HTTP Header [Content-Type] := "image/png"

* HTTP Body := PNG picture (see Annex A.29 for details)
4.7.5.3. The DUT responds with HTTP 200 OK message.
4.7.5.4. ONVIF Client waits timeout1.

4.8. ONVIF Client invokes CreateOSD with token = "testOSD",
VideoSourceConfigurationToken = VideoSourceConfigurationToken1, Type="Image",
Position. Type should be set to the first item from OSDOptions1.PositionOption
list and Image.ImgPath should be set to the first item from
OSDOptions1.ImageOption.ImagePath list.

www.onvif.org 167

OnviF: | sxeeegre

4.9. DUT creates OSD Configuration and sends CreateOSDResponse message. ONVIF

Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken1 variable.

4.10. ONVIF Client verifies that OSDConfigurationsList1 does not contain configuration with
token = OSDConfigurationToken1.

4.11. ONVIF Client invokes GetOSDs message with OSD Token =
OSDConfigurationToken1 as input parameter to retrieve newly created OSD
Configuration.

4.12. DUT sends OSD Configuration for the given token. ONVIF Client verifies that response
contains OSD Configuration with token = OSDConfigurationToken1 and configuration
fields equal to the fields set at step in 4.6.

4.13. ONVIF Client invokes DeleteOSD with OSD Token = OSDConfigurationToken1 as
input parameter.

4.14. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

4.15. ONVIF Client invokes CreateOSD with token = "testOSD",
VideoSourceConfigurationToken = VideoSourceConfigurationToken1, Type="Image",
Position. Type should be set to the last item from OSDOptions1.PositionOption
list and Image.ImgPath should be set to the last item from
OSDOptions1.ImageOption.ImagePath list.

4.16. DUT created OSD Configuration and sends CreateOSDResponse message. ONVIF
Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken2 variable.

4.17. ONVIF Client verifies that OSDConfigurationsList1 does not contain configuration with
token = OSDConfigurationToken2.

4.18. ONVIF Client invokes GetOSDs message with configuration token =
OSDConfigurationTokenZ2 as input parameter to retrieve the list of OSD Configurations,
which includes newly created OSD Configuration.

4.19. DUT sends GetOSDsResponse with a list of OSD Configurations. ONVIF
Client verifies that response contains OSD Configuration with token =
OSDConfigurationToken2 and configuration fields equal to the fields set at step in 4.16.

4.20. ONVIF Client invokes DeleteOSD with OSD Token = OSDConfigurationToken2 as
input parameter.

168 www.onvif.org

OnviF | empnggre

4.21. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

4.22. ONVIF Client invokes GetOSDs message with configuration token =
VideoSourceConfigurationToken1 as input parameter to retrieve the list of OSD
Configurations, which includes newly created OSD Configuration.

4.23. DUT sends GetOSDsResponse with a list of OSD Configurations. ONVIF
Client verifies that response does not contain OSD Configuration with token =
OSDConfigurationToken2.

4.24.I1f OSD Configuration was deleted at 4.6 [167] step, ONVIF Client restores OSD
Configuration.

Test Result:
PASS -
* DUT passes all assertions.

« DUT did not send at least one image overlay (Image Option is skipped) in
GetOSDOptionsResponse

FAIL -
» The DUT did not send GetVideoSourceConfigurationsResponse message.

* The GetVideoSourceConfigurationsResponse does not contain at least one Video Source
configuration.

* The DUT did not send GetOSDsResponse message.

* The DUT did not send GetOSDOptionsResponse message.
* The DUT did not send CreateOSDResponse message.

* The DUT did not send GetOSDResponse message.

* The DUT did not send DeleteOSDResponse message.

* The GetOSDsResponse contains deleted OSD Configuration.

5.6.3 SET OSD CONFIGURATION IMAGE OVERLAY

Test Case ID: MEDIA2-6-1-3

Specification Coverage: None

www.onvif.org 169

OnviF | empnggre

Feature Under Test: GetVideoSourceConfigurations, GetOSDs, GetOSDOptions, CreateOSD,
DeleteOSD, SetOSD

WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT changes OSD Configuration for Image Overlay.
Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Clientinvokes GetVideoSourceConfigurations message to retrieve a list of existing
Video Source Configurations on the DUT.

4. Verify that the DUT returns at least one Video Source Configuration in
the GetVideoSourceConfigurationsResponse message. For each Video Source
Configuration from GetVideoSourceConfigurationsResponse, ONVIF Client saves this
configuration in VideoSourceConfigurationToken1 variable and runs the following steps:

4.1. ONVIF Client invokes GetOSDOptions request with parameters
» ConfigurationToken := VideoSourceConfigurationToken1

4.2. DUT responds with GetOSDOptionsResponse message with parameters
* OSDOptions =: 0sdOptions1

4.3. If GetOSDOptionsResponse contains at least one item in Image Option (image
overlay), then ONVIF Client saves the options from GetOSDOptionsResponse in
OSDOptions1 variable and goes to step 4.5.

4.4. If OSDOptions1 Image Option list is empty, then PASS the test.
4.5. ONVIF Client invokes GetOSDs request with parameters

» OSDToken - skipped

» ConfigurationToken := VideoSourceConfigurationToken1
4.6. The DUT responds with GetOSDsResponse with parameters

» OSDs list =: OSDConfigurationsList1

170 www.onvif.org

OnviF | empnggre

4.7. ONVIF Client configures Device to have free space to create OSD with Image type
and with required TextString Type by following the procedure mentioned in Annex A.25
with the following input and output parameters

* in OSDConfigurationsList1 - OSD Configurations List
* in 0sdOptions - OSD Options
* in "Image" - OSD Type
» out OSDConfigurationsList1 - updated OSD Configurations List
4.8. If osdOptions.ImageOption contains FormatsSupported attribute:
4.8.1. SetimagePath1 := osdOptions.ImageOption.ImagePath[0]
4.8.2. ONVIF client invokes HTTP POST to imagePath1 with parameters
* HTTP Header [Content-Type] := "image/png"
* HTTP Body := PNG picture (see Annex A.29 for details)
4.8.3. The DUT responds with HTTP 200 OK message.
4.8.4. ONVIF Client waits timeout1.

4.9. ONVIF Client invokes CreateOSD with token = "testOSD",
VideoSourceConfigurationToken = VideoSourceConfigurationToken1, Type="Image",
Position.Type should be set to the first item from OSDOptions1.PositionOption
list and Image.ImgPath should be set to the first item from
OSDOptions1.ImageOption.ImagePath list.

4.10. DUT creates OSD Configuration and sends CreateOSDResponse message. ONVIF
Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken1 variable.

4.11. ONVIF Client invokes GetOSDs message with OSD Token =
OSDConfigurationToken1 as input parameter to retrieve newly created OSD
Configuration.

4.12. DUT sends OSD Configuration for the given token. ONVIF Client verifies that response
contains OSD Configuration with token = OSDConfigurationToken1 and saves this
configuration in OSDConfigurations1 variable.

www.onvif.org 171

OnviF | empnggre

4.13. ONVIF Client changes position parameter in OSDConfigurations1 variable. The

Position.Type should be changed to the last item from OSDOptions1.PositionOption
list.

4.14. ONVIF Client invokes SetOSD with OSD = OSDConfigurations1 as input parameter.
DUT applies the changes and sends SetOSDResponse.

4.15. ONVIF Client invokes GetOSDs message with OSD Token = OSDConfigurations1
token as input parameter.

4.16. DUT sends OSD Configuration for the given token. ONVIF Client verifies that
response contains OSD Configuration with token = OSDConfigurations1 token and
Position.Type is set to the value, which has been set at step 4.11.

4.17. If new OSD Configuration has been created at step 4.5, then ONVIF Client invokes
DeleteOSD with OSD Token = OSDConfigurations1 token as input parameter.

4.18. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

4.19. If OSD Configuration was deleted at 4.7 [171] step, ONVIF Client restores OSD
Configuration.

Test Result:
PASS -
* DUT passes all assertions.

« DUT did not send at least one image overlay (Image Option list is empty) in
GetOSDOptionsResponse

FAIL -
» The DUT did not send GetVideoSourceConfigurationsResponse message.

+ The GetVideoSourceConfigurationsResponse does not contain at least one Video Source
configuration.

* The DUT did not send GetOSDsResponse message.

* The DUT did not send GetOSDOptionsResponse message.
* The DUT did not send CreateOSDResponse message.

» The DUT rejected create OSD Request.

* The DUT did not send GetOSDResponse message.

172 www.onvif.org

OnviF | empnggre

* The DUT did not send DeleteOSDResponse message.

* The DUT did not send DeleteOSDResponse message.

5.6.4 SET OSD CONFIGURATION TEXT OVERLAY

Test Case ID: MEDIA2-6-1-4
Specification Coverage: None

Feature Under Test: GetVideoSourceConfigurations, GetOSDs, GetOSDOptions, CreateOSD,
DeleteOSD, SetOSD

WSDL Reference: media2.wsdl
Test Purpose: To verify that DUT changes OSD Configuration for Test Overlay.
Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Clientinvokes GetVideoSourceConfigurations message to retrieve a list of existing
Video Source Configurations on the DUT.

4. Verify that the DUT returns at least one Video Source Configuration in
the GetVideoSourceConfigurationsResponse message. For each Video Source
Configuration from GetVideoSourceConfigurationsResponse, ONVIF Client saves this
configuration in VideoSourceConfigurationToken1 variable and runs steps 4.1 - 4.18:

4.1. ONVIF Client invokes GetOSDOptions request with parameters
» ConfigurationToken := VideoSourceConfigurationToken1

4.2. DUT responds with GetOSDOptionsResponse message with parameters
» OSDOptions =: OSDOptions1

4.3. ONVIF Client invokes GetOSDs request with parameters
» OSDToken - skipped

» ConfigurationToken := VideoSourceConfigurationToken1

www.onvif.org 173

OnviF’ | wsmanggres

4.4. The DUT responds with GetOSDsResponse with parameters

» OSDs list =: OSDConfigurationsList1

4.5. Onvif client checks if DUT supports OSD configurations of the type=text. Otherwise,
skip all steps and pass the test.

4.6. Set osdTextStringType := OSDOptions1.TextOption.Type[0], where Type[0] is the 1st
in Type list from {Plain, Date, Time, DateAndTime} values

4.7. ONVIF Client configures Device to have free space to create OSD with Text type and
with required TextString Type by following the procedure mentioned in Annex A.25 with
the following input and output parameters

» in OSDConfigurationsList1 - OSD Configurations List

* in osdOptions - OSD Options

in "Text" - OSD Type

out OSDConfigurationsList1 - updated OSD Configurations List

4.8. ONVIF Client invokes CreateOSD with token = "testOSD",
VideoSourceConfigurationToken = VideoSourceConfigurationToken1, Type="Text"
and the rest of parameters are populated using values from OSDOptions1. For this
step, if the value has a range of available values, then minimum value (or the first value
from list if list of available values is provided by DUT) from OSDOptions1 should be
used. See details of fields mapping in Annex A.28.

4.9. DUT creates OSD Configuration and sends CreateOSDResponse message. ONVIF
Client receives CreateOSDResponse with token of newly created OSD Configuration
and saves this token to OSDConfigurationToken1 variable.

4.10. ONVIF Client invokes GetOSDs message with OSD Token =
OSDConfigurationToken1 as input parameter to retrieve newly created OSD
Configuration.

4.11. DUT sends OSD Configuration for the given token. ONVIF Client verifies that response
contains OSD Configuration with token = OSDConfigurationToken1 and saves this
configuration in OSDConfigurations1 variable.

4.12. ONVIF Client changes the fields value of OSDConfigurations1 variable to the
maximum available values. If the value has a range of available values, then maximum
value (or the last value from list if list of available values is provided by DUT) from

174 www.onvif.org

OnviF | empnggre

OSDOptions1 should be used. OSD.TextString. Type shall not be changed. See details
of fields mapping in Annex A.28.

4.13. ONVIF Client invokes SetOSD with OSD = OSDConfigurations1 as input parameter.
DUT applies the changes and sends SetOSDResponse.

4.14. ONVIF Client invokes GetOSDs message with OSD Token = OSDConfigurations1
token as input parameter.

4.15. DUT sends OSD Configuration for the given token. ONVIF Client verifies that response
contains OSD Configuration with token = OSDConfigurations1 token and configuration
fields equal to the fields set at step 4.9.

4.16. If new OSD Configuration has been created at step 4.5, then ONVIF Client invokes
DeleteOSD with OSD Token = OSDConfigurations1 token as input parameter.

4.17. DUT sends DeleteOSDResponse, which indicates that DUT has deleted OSD
Configuration. ONVIF Client verifies the response.

4.18. If OSD Configuration was deleted at 4.7 [174] step, ONVIF Client restores OSD
Configuration.

Test Result:
PASS -
* DUT passes all assertions.

FAIL —

The DUT did not send GetVideoSourceConfigurationsResponse message.

* The GetVideoSourceConfigurationsResponse does not contain at least one Video Source
configuration.

* The DUT did not send GetOSDsResponse message.

* The DUT did not send GetOSDOptionsResponse message.
* The DUT did not send CreateOSDResponse message.

» The DUT rejected create OSD Request.

* The DUT did not send GetOSDResponse message.

* The DUT did not send SetOSDResponse message.

www.onvif.org 175

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* The DUT did not send DeleteOSDResponse message.

5.6.5 GET OSDS

Test Case ID: MEDIA2-6-1-5

Specification coverage: GetOSDs (Media 2 Service Specification), Get configurations (Media 2
Service Specification)

Feature under test: GetOSDs
WSDL Reference: media2.wsdl

Test Purpose: To verify DUT sends complete OSDs list and list of OSDs, which are compatible
with specific Video Source Configuration.

Pre-Requisite: Media2 Service is received from the DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetOSDs request with parameters
* OSDToken - skipped
» ConfigurationToken - skipped
4. The DUT responds with GetOSDsResponse with parameters
* OSDs list =: osdConfCompleteList1

5. If osdConfCompleteList1 contains at least two items with the same @token, FAIL the test
and skip other steps.

6. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

7. Foreach Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

176 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

7.1. ONVIF Client invokes GetOSDs request with parameters

+ OSDToken - skipped
» ConfigurationToken := videoSourceConf1.@token

7.2. The DUT responds with GetOSDsResponse with parameters
» OSDs list =: osdConfList1

7.3. If osdConfList1 contains at least two items with the same @token, FAIL the test and
skip other steps.

7.4. If osdConfCompleteList1 does not contain at least one item from osdConfList1 list,
FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send GetOSDsResponse message(s).

5.6.6 GET OSD OPTIONS

Test Case ID: MEDIA2-6-1-6

Specification Coverage: GetOSDOptions

Feature Under Test: GetOSDOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify consistency in OSD Options.

Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.
Test Configuration: ONVIF Client and DUT

Test Procedure:

1. Start an ONVIF Client.

www.onvif.org 177

OnviF | empnggre

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

4. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

4.1. ONVIF Client invokes GetOSDOptions request with parameters
» ConfigurationToken := videoSourceConfiguration.@token

4.2. DUT responds with GetOSDOptionsResponse message with parameters
» OSDOptions =: osdOptions

4.3. If osdOptions.MaximumNumberOfOSDs.Total > 0:

4.3.1. If osdOptions has Type = "Text" and does not have TextOption element, FAIL
the test and skip other steps.

4.3.2. If osdOptions has TextOption element and does not have Type = "Text" , FAIL
the test and skip other steps.

4.3.3. If osdOptions has Type = "Image" and does not have ImageOption element,
FAIL the test and skip other steps.

4.3.4. If osdOptions has ImageOption element and does not have Type = "Image",
FAIL the test and skip other steps.

4.3.5. If 0sdOptions.MaximumNumberOfOSDs has @PlainText with value > 0 and
0sdOptions does not have Type = "Text", FAIL the test and skip other steps.

4.3.6. If osdOptions.MaximumNumberOfOSDs has @Image with value > 0 and
o0sdOptions does not have Type = "Image", FAIL the test and skip other steps.

4.3.7. If osdOptions.ImageOption contains FormatsSupported attribute:

4.3.7.1.1f osdOptions.ImageOption.FormatsSupported does not contain
"image/png" item, FAIL the test and skip other steps.

4.3.7.2.If osdOptions.ImageOption does not contain MaxSize attribute or it
does not contain both MaxWidth attribute and MaxHeight attribute,
FAIL the test and skip other steps.

178 www.onvif.org

ONVIE® | imsgres

4.3.7.3.If osdOptions.ImageOption contains MaxSize attribute with value less
than 1024, FAIL the test and skip other steps.

4.3.7.4.1f osdOptions.ImageOption contains MaxWidth attribute with value
less than 16, FAIL the test and skip other steps.

4.3.7.5. If osdOptions.ImageOption contains MaxHeight attribute with value
less than 16, FAIL the test and skip other steps.

4.3.8. If osdOptions.TextOption has Type = "Date" and does not have at least one
DateFormat element, FAIL the test and skip other steps.

4.3.9. If osdOptions.TextOption has Type = "Time" and does not have at least one
TimeFormat element, FAIL the test and skip other steps.

4.3.10. If osdOptions.TextOption has Type = "DateAndTime" and does not have at
least one DateFormat element and at least one TimeFormat element, FAIL the
test and skip other steps.

5. If there was no at least one o0sdOptions with MaximumNumberOfOSDs.Total > 0 at step
4.3 [178], FAIL the test and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.
FAIL -

» The DUT did not send GetOSDOptionsResponse message(s).

5.6.7 OSD CONFIGURATIONS AND OSD OPTIONS
CONSISTENCY

Test Case ID: MEDIA2-6-1-7

Specification Coverage: GetOSDOptions, GetOSDs

Feature Under Test: GetOSDOptions, GetOSDs

WSDL Reference: media2.wsdi

Test Purpose: To verify all OSD configurations are consistent with OSD Options.

www.onvif.org 179

ONVIE® | imsgres

Pre-Requisite: Media2 Service feature is supported by DUT. OSD feature is supported by DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList - Video Source Configurations list

4. For each Video Source Configuration videoSourceConfiguration in videoSourceConfList
repeat the following steps:

4.1. ONVIF Client invokes GetOSDs request with parameters
+ OSDToken skipped
» ConfigurationToken := videoSourceConfiguration.@token

4.2. DUT responds with GetOSDsResponse message with parameters
» OSDs =: osdList

4.3. If osdListis empty, skip other steps.

4.4. ONVIF Client invokes GetOSDOptions request with parameters
» ConfigurationToken := videoSourceConfiguration.@token

4.5. DUT responds with GetOSDOptionsResponse message with parameters
» OSDOptions =: osdOptions

4.6. For each OSD osd in osdList repeat the following steps:

46.1. If osd.VideoSourceConfigurationToken is not equal to
videoSourceConfiguration.@token, FAIL the test and skip other steps.

4.6.2. If osdOptions.MaximumNumberOfOSDs.Total is not greater than 0, FAIL the
test and skip other steps.

4.6.3. If osdOptions does not contain Type element with value is equal to 0sd.Type,
FAIL the test and skip other steps.

180 www.onvif.org

ONVIE® | imsgres

4.6.4. If osdOptions does not contain PositionOption element with value is equal to

osd.Position. Type, FAIL the test and skip other steps.
4.6.5. If osd.TextString specified:

4.6.5.1. If osdOptions does not contain TextOption element with Type
element with value is equal to osd.TextString.Type, FAIL the test and
skip other steps.

4.6.5.2. Set 0osdOptions.TextOption =: textOption1.
4.6.6. If osd.TextString.DateFormat specified:

4.6.6.1. If textOption1 does not contain at least one DateFormat element
with value is equal to osd.TextString.DateFormat, FAIL the test and
skip other steps.

4.6.7. If osd.TextString.TimeFormat specified:

4.6.71. If textOption1 does not contain at least one TimeFormat element
with value is equal to osd.TextString. TimeFormat, FAIL the test and
skip other steps.

4.6.8. If osd.TextString.FontSize specified:

4.6.8.1. If textOption1.FontSizeRange.Min > osd.TextString.FontSize, FAIL
the test and skip other steps.

4.6.8.2. If textOption1.FontSizeRange.Max < osd.TextString.FontSize, FAIL
the test and skip other steps.

4.6.9. If osd.TextString.FontColor specified:

4.6.9.1. If textOption1 does not contain FontColor.Color element, FAIL the
test and skip other steps.

4.6.9.2. If textOption1.FontColor.Color has at least one ColorList element:

4.6.9.21. If textOption1.FontColor does not contain
ColorList element with @X =
osd.TextString.FontColor.Color.@X, and with @Y
osd.TextString.FontColor.Color.@Y, and with @Z
osd.TextString.FontColor.Color.@Z, and with
@Colorspace =

www.onvif.org 181

182

O n VI F ® | Standardizing IP Connectivity
for Physical Security

osd.TextString.FontColor.Color.@Colorspace, FAIL
the test and skip other steps.

4.6.9.3. If textOption1.FontColor.Color has at least one ColorspaceRange
element:

4.6.9.3.1. If osd.TextString.FontColor.Color does not have
@Colorspace element, FAIL the test and skip other
steps.

4.6.9.3.2. Set textOption1.FontColor.Color.ColorspaceRange =:
colorspaceRange1, where
textOption1.FontColor.Color.ColorspaceRange is the
first ColorspaceRange element that corresponds the
following requirements:

» colorspaceRange1.@Colorspace =
osd.TextString.FontColor.Color.@Colorspace.

» colorspaceRange1.X.Min <=
osd.TextString.FontColor.Color.@X

» colorspaceRange1.X.Max >=
osd.TextString.FontColor.Color.@X

» colorspaceRange1.Y.Min <=
osd.TextString.FontColor.Color.@Y

» colorspaceRange1.Y.Max >=
osd.TextString.FontColor.Color.@Y

* colorspaceRange1.Z.Min <=
osd.TextString.FontColor.Color.@Z

» colorspaceRange1.Z.Max >=
osd.TextString.FontColor.Color.@Z

4.6.9.3.3. If colorspaceRange1 is empty, FAIL the test and skip
other steps.

4.6.10. If osd.TextString.FontColor.@Transparent specified:

4.6.10.1. If textOption1 does not contain FontColor.Transparent element,
FAIL the test and skip other steps.

www.onvif.org

4.6.11.

4.6.12.

4.6.13.

ONVIE® | imsgres

46.10.2. If textOption1.FontColor.Transparent.Min >
osd.TextString.FontColor.@Transparent, FAIL the test and skip
other steps.

4.6.10.3. If textOption1.FontColor.Transparent.Max <
osd.TextString.FontColor.@Transparent, FAIL the test and skip
other steps.

If osd.TextString.BackgroundColor specified:

4.6.11.1. If textOption1 does not contain BackgroundColor.Color element,
FAIL the test and skip other steps.

If textOption1.BackgroundColor.Color has at least one ColorList element:

4.6.12.1. If textOption1.BackgroundColor does not contain ColorList
element with @X = osd.TextString.BackgroundColor.Color.@X,
and with @Y = osd.TextString.BackgroundColor.Color.@Y,
and with @Z = osd.TextString.BackgroundColor.Color.@Z,
and with @Colorspace =
osd.TextString.BackgroundColor.Color.@Colorspace, FAIL the
test and skip other steps.

If textOption1.BackgroundColor.Color has at least one ColorspaceRange
element:

46.13.1. If osd.TextString.BackgroundColor.Color does not have
@Colorspace element, FAIL the test and skip other steps.

4.6.13.2. Set textOption1.BackgroundColor.Color.ColorspaceRange =:
colorspaceRange1, where
textOption1.BackgroundColor.Color.ColorspaceRange is the first
ColorspaceRange element that corresponds the following
requirements:

» colorspaceRange1.@Colorspace =
osd.TextString.BackgroundColor.Color.@Colorspace.

+ colorspaceRange1.X.Min <=
osd.TextString.BackgroundColor.Color.@X

» colorspaceRange1.X.Max >=
osd.TextString.BackgroundColor.Color.@X

www.onvif.org 183

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» colorspaceRange1.Y.Min <=
osd.TextString.BackgroundColor.Color.@Y

» colorspaceRange1.Y.Max >=
osd.TextString.BackgroundColor.Color.@Y

» colorspaceRange1.Z.Min <=
osd.TextString.BackgroundColor.Color.@Z

* colorspaceRange1.Z.Max >=
osd.TextString.BackgroundColor.Color.@Z

4.6.13.3. If colorspaceRange1 is empty, FAIL the test and skip other steps.
4.6.14. If osd.TextString.BackgroundColor.@Transparent specified:

4.6.14.1. If textOption1 does not contain BackgroundColor.Transparent
element, FAIL the test and skip other steps.

46.14.2. If textOption1.BackgroundColor.Transparent.Min >
osd.TextString.BackgroundColor.@Transparent, FAIL the test and
skip other steps.

46.143. If textOption1.BackgroundColor. Transparent.Max <

osd.TextString.BackgroundColor.@Transparent, FAIL the test and
skip other steps.

4.6.15. If osd.Image specified:

4.6.15.1. If osdOptions does not contain ImageOption element, FAIL the test
and skip other steps.

4.6.15.2. If osdOptions.ImageOption does not contain ImagePath element
with value is equal to osd.Image.ImgPath, FAIL the test and skip
other steps.

Test Result:

PASS -

» DUT passes all assertions.

FAIL —

184

* The DUT did not send GetOSDsResponse message(s).

www.onvif.org

OnviF | empnggre

» The DUT did not send GetOSDOptionsResponse message(s).

5.7 Capabilities

5.7.1 MEDIA2 SERVICE CAPABILITIES

Test Case ID: MEDIA2-7-1-1

Specification = Coverage: Capabilities (ONVIF Media2 Service Specification),
GetServiceCapabilities command (ONVIF Media2 Service Specification)

Feature Under Test: GetServiceCapabilities (for Media2 Service)
WSDL Reference: media2.wsdl
Test Purpose: To verify DUT Media2 Service Capabilities.
Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client invokes GetServiceCapabilities.

4. The DUT responds with GetServiceCapabilitiesResponse message with parameters

* Capabilities =: cap

5. If cap.ProfileCapabilities does not contain MaximumNumberOfProfiles attribute, FAIL the
test.

6. If cap.ProfileCapabilities does not contain ConfigurationsSupported attribute, FAIL the test.
7. If cap.ProfileCapabilities.ConfigurationsSupported contains no items, FAIL the test.
8. If cap.ProfileCapabilities.ConfigurationsSupported contains 'All' item, FAIL the test.

9. If DUT supports Analytics Service and cap.ProfileCapabilities.ConfigurationsSupported
does not contain 'Analytics' item, FAIL the test.

10.1f DUT cap.ProfileCapabilities.ConfigurationsSupported contains 'Analytics' item and DUT
does not support Analytics Service, FAIL the test.

www.onvif.org 185

OnviF | empnggre

11. If DUT supports PTZ Service and cap.ProfileCapabilities.ConfigurationsSupported does not
contain 'PTZ' item, FAIL the test.

12.1f DUT cap.ProfileCapabilities.ConfigurationsSupported contains 'PTZ' item and DUT does
not support PTZ Service, FAIL the test.

13.1f DUT supports Media2/Video feature and cap.ProfileCapabilities.ConfigurationsSupported
does not contain 'VideoSource' item, FAIL the test.

14.1f DUT supports Media2/Audio feature and cap.ProfileCapabilities.ConfigurationsSupported
does not contain 'AudioSource' item, FAIL the test.

15.1f DUT supports Media2/Audio outputs feature and
cap.ProfileCapabilities.ConfigurationsSupported does not contain 'AudioDecoder' item,
FAIL the test.

16.If cap.StreamingCapabilities contains RTSPWebSocketUri
16.1. Set rispWebSocketUri := cap.StreamingCapabilities.RTSPWebSocketUri

16.2. If scheme component of rispWebSocketUri is not equal to ws or wss, FAIL the test
and skip other steps.

16.3. If hierarchical component (hier_part in [rfc2396]) of rispWebSocketUri is not absolute
path construction (abs_path in [rfc2396]), FAIL the test and skip other steps.

17.1f cap.ProfileCapabilities.ConfigurationsSupported contains 'PTZ" item
17.1. ONVIF Client invokes GetConfigurations request.
17.2. The DUT responds with GetConfigurationsResponse message with parameters
» PTZConfiguration list =: ptzConfigurationList
17.3. If ptzConfigurationList is empty, FAIL the test and skip other steps.
18.If cap.ProfileCapabilities.ConfigurationsSupported contains 'Analytics' item
18.1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken skipped

18.2. The DUT responds with GetAnalyticsConfigurationsResponse message with
parameters

» Configurations list =: analyticsConfigurationList

186 www.onvif.org

OnviF | empnggre

18.3. If analyticsConfigurationList is empty, FAIL the test and skip other steps.

19.1f DUT supports Media2/AudioClip feature
19.1. If cap.AudioClipCapabilities is not specified, FAIL the test and skip other steps.

19.2. If cap.AudioClipCapabilities.SupportedAudioClipFormat is empty, FAIL the test and
skip other steps.

19.3. If cap.AudioClipCapabilities.MaxAudioClipLimit is not specified, FAIL the test and skip
other steps.

19.4. If cap.AudioClipCapabilities.MaxAudioClipLimit is not greater than 0, FAIL the test and
skip other steps.

19.5. If cap.AudioClipCapabilities.MaxAudioClipSize is not specified, FAIL the test and skip
other steps.

19.6. If cap.AudioClipCapabilities.MaxAudioClipSize is not greater than 0, FAIL the test and
skip other steps.

Test Result:

PASS -
* DUT passes all assertions.

FAIL -
» The DUT did not send GetServiceCapabilitiesResponse message.
+ The DUT did not send GetConfigurationsResponse message.

+ The DUT did not send GetAnalyticsConfigurationsResponse message.

5.7.2 GET SERVICES AND GET MEDIA2 SERVICE
CAPABILITIES CONSISTENCY

Test Case ID: MEDIA2-7-1-2

Specification Coverage: Capability exchange (ONVIF Core Specification), Capabilities (ONVIF
Media2 Service Specification), GetServiceCapabilities command (ONVIF Media2 Service
Specification)

Feature Under Test: GetServices, GetServiceCapabilities (for Media2 Service)

WSDL Reference: devicemgmt.wsdl, media2.wsdl

www.onvif.org 187

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Test Purpose: To verify Get Services and Media2 Service Capabilities consistency.

Pre-Requisite: Media2 Service is received from the DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetServices with parameters
* IncludeCapability := true
4. The DUT responds with a GetServicesResponse message with parameters
» Services list =: servicesList

5. ONVIF Client selects Service with Service.Namespace = “http://www.onvif.org/ver20/media/
wsdl”:

» Services list [Namespace = “http://www.onvif.org/ver20/media/wsdl’] =: media2Service

6. ONVIF Client invokes GetServiceCapabilities message to retrieve media2 service
capabilities of the DUT.

7. The DUT responds with GetServiceCapabilitiesResponse message with parameters
* Capabilities =: cap

8. If cap differs from media2Service.Capabilities.Capabilities, FAIL the test.
Test Result:
PASS -

* DUT passes all assertions.
FAIL -

+ The DUT did not send GetServicesResponse message.

+ The DUT did not send GetServiceCapabilitiesResponse message.
Note: The following fields are compared at step 6:

» SnapshotUri

* Rotation

188 www.onvif.org

OnviF | empnggre

+ VideoSourceMode

+ OSD

* Mask

* ProfileCapabilities.MaximumNumberOfProfiles
+ ProfileCapabilities.ConfigurationsSupported
+ StreamingCapabilities. RTSPStreaming

» StreamingCapabilities.RTPMulticast

+ StreamingCapabilities.RTP_RTSP_TCP

» StreamingCapabilities.NonAggregateControl
» StreamingCapabilities. RTSPWebSocketUri
* AudioClipCapabilities.MaxAudioClipLimit

* AudioClipCapabilities.MaxAudioClipSize

* AudioClipCapabilities.SupportedAudioClipFormat

5.8 Metadata Configuration

5.8.1 Metadata Configuration

5.8.1.1 MODIFY ALL SUPPORTED METADATA
CONFIGURATIONS

Test Case ID: MEDIA2-8-1-1

Specification Coverage: Get configurations, Get configuration options, Metadata Configuration,
Modify a configuration, Configuration Change

Feature Under Test: GetMetadataConfigurationOptions, GetMetadataConfigurations,
SetMetadataConfiguration, Media Configuration Changed Event.

WSDL Reference: media2.wsdl

Test Purpose: To verify whether all supported Metadata Configuration Options can be set. To verify
tns1:Media/ConfigurationChanged event generation when Metadata Configuration changes.

Pre-Requisite: Media2 Service is received from the DUT. Metadata feature under Media2 Service
is supported by the DUT. Event Service was received from the DUT.

www.onvif.org 189

ONVIE® | imsgres

Test Configuration: ONVIF Client and DUT

Test Procedure:

-_—

. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Client retrieves Metadata Configurations list by following the procedure mentioned
in Annex A.30 with the following input and output parameters

» out metadataConfList - Metadata Configurations list

4. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client creates PullPoint subscription for the specified topic by following the
procedure mentioned in Annex A.4 with the following input and output parameters

+ in "tns1:Media/ConfigurationChanged" - Notification Topic
» out s - Subscription reference

» out currentTime - current time for the DUT

» out terminationTime - Subscription termination time

5. For each Metadata Configuration metadataConfiguration in metadataConfList repeat the
following steps:

5.1. ONVIF Client invokes GetMetadataConfigurationOptions request with parameters
» ConfigurationToken := metadataConfiguration.@token
* ProfileToken skipped

5.2. DUT responds with GetMetadataConfigurationOptionsResponse message with
parameters

» Options =: options

5.3. ONVIF Client invokes SetMetadataConfiguration request with parameters

Configuration.@token := metadataConfiguration.@token
» Configuration.Name := "TestName1"

+ Configuration.UseCount := metadataConfiguration.UseCount

If options does not contain at least one Extension.CompressionType element:

190 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

. Configuration.CompressionType skipped

+ Otherwise:

. Configuration.CompressionType := options.Extension.CompressionType[0]
+ If DUT does not support PTZ service:

. Configuration.PTZStatus skipped
 If DUT supports PTZ service:

. Configuration.PTZStatus.Status =
(options.PTZStatusFilterOptions.PanTiltStatusSupported or
options.PTZStatusFilterOptions.ZoomStatusSupported)

. If options.PTZStatusFilterOptions.PanTiltPositionSupported and
options.PTZStatusFilterOptions.ZoomPositionSupported are skipped:

. Configuration.PTZStatus.Position ;= false
. Otherwise:

. Configuration.PTZStatus.Position =
(options.PTZStatusFilterOptions.ZoomPositionSupported) or
options.PTZStatusFilterOptions.PanTiltPositionSupported)

+ Configuration.Events.Filter. TopicExpression := "tns1:Media/ConfigurationChanged"

» Configuration.Events.Filter. TopicExpression.Dialect := "http://www.onvif.org/ver10/
tev/topicExpression/ConcreteSet"

+ If DUT does not support Analytics service:
. Configuration.Analytics skipped
+ If DUT supports Analytics service:
. Configuration.Analytics := true
» Configuration.Multicast := metadataConfiguration.Multicast
+ Configuration.SessionTimeout := metadataConfiguration.SessionTimeout
+ Configuration.AnalyticsEngineConfiguration skipped

5.4. DUT responds with SetMetadataConfigurationResponse message.

www.onvif.org 191

ONVIE® | imsgres

5.5. If DUT supports Pull-Point Notification feature and Configuration Changed Notification

feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time
* in metadataConfiguration.@token - Configuration token
+ in Metadata - Configuration Type
5.6. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken := metadataConfiguration.@token
* ProfileToken skipped
5.7. The DUT responds with GetMetadataConfigurationsResponse with parameters
» Configurations list =: metadataConfList

5.8. If metadataConfList[0] is not equal to Configuration from step 5.3, FAIL the test and
skip other steps.

5.9. ONVIF Client invokes SetMetadataConfiguration request with parameters

Configuration.@token := metadataConfiguration.@token

Configuration.Name := "TestName2"

» Configuration.UseCount := metadataConfiguration.UseCount

If options does not contain at least one Extension.CompressionType element:
. Configuration.CompressionType skipped
* Otherwise:

. Configuration.CompressionType := if options.Extension.CompressionType
contains at least two items options.Extension.CompressionType[1], otherwise
options.Extension.CompressionType[0]

If DUT does not support PTZ service:

192 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

. Configuration.PTZStatus skipped
 |If DUT supports PTZ service:
. Configuration.PTZStatus.Status := false
. Configuration.PTZStatus.Position := false
» Configuration.Events skipped
+ If DUT does not support Analytics service:
. Configuration.Analytics skipped
 If DUT supports Analytics service:
. Configuration.Analytics := false
» Configuration.Multicast := metadataConfiguration.Multicast
» Configuration.SessionTimeout := metadataConfiguration.SessionTimeout
+ Configuration.AnalyticsEngineConfiguration skipped
5.10. DUT responds with SetMetadataConfigurationResponse message.

5.11. If DUT supports Pull-Point Notification feature and Configuration Changed Notification
feature, ONVIF Client retrieves and checks tns1:Media/ConfigurationChanged
event for the specified Configuration by following the procedure mentioned in Annex
A.14 with the following input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time

* in audioSourceConfiguration.@token - Configuration token

in Metadata - Configuration Type
5.12. ONVIF Client invokes GetMetadataConfigurations request with parameters
+ ConfigurationToken := metadataConfiguration.@token

« ProfileToken skipped

www.onvif.org 193

O n VI F ® Standardizing IP Connectivity
for Physical Security

5.13. The DUT responds with GetMetadataConfigurationsResponse with parameters

» Configurations list =: metadataConfList

5.14. If metadataConfList[0] is not equal to Configuration from step 5.9, FAIL the test and
skip other steps.

6. If subscription was created at step 4, ONVIF Client deletes PullPoint subscription by
following the procedure mentioned in Annex A.6 with the following input and output
parameters

* in s - Subscription reference
7. ONVIF Client restores Metadata Configurations.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetMetadataConfigurationsResponse message.
» DUT did not send SetMetadataConfigurationResponse message.
« DUT did not send GetMetadataConfigurationOptionsResponse message.
Note: The following fields are compared at step 5.8 and 5.14:
+ token
* Name
* CompressionType
+ PTZStatus
* Events
* Analytics

* Multicast

5.8.1.2 GET METADATA CONFIGURATIONS

Test Case ID: MEDIA2-8-1-2

194 www.onvif.org

OnviF | empnggre

Specification Coverage: Get configurations, Metadata configuration.

Feature Under Test: GetMetadataConfigurations
WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Metadata Configuration List, Metadata Configuration
by Configuration token and compatible Metadata Configuration by Profile token.

Pre-Requisite: Media2 Service is received from the DUT. Metadata feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Metadata Configurations list by following the procedure mentioned
in Annex A.30 with the following input and output parameters

» out metadataConfCompleteList - Metadata Configurations list

4. If metadataConfCompleteList contains at least two items with the same @token, FAIL the
test and skip other steps.

5. For each metadataConfiguration in metadataConfCompleteList repeat the following steps:
5.1. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken := metadataConfiguration.@token
* ProfileToken skipped
5.2. The DUT responds with GetMetadataConfigurationsResponse with parameters
» Configurations list =: metadataConfList
5.3. If metadataConfList is empty, FAIL the test and skip other steps.
5.4. If metadataConfList contains more than one item, FAIL the test and skip other steps.

5.5. If metadataConfList does not contain item with @token =
metadataConfiguration.@token, FAIL the test and skip other steps.

6. ONVIF Client invokes GetProfiles request with parameters

www.onvif.org 195

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* Token skipped
* Type[0] := Metadata
7. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
8. For each Media Profile profile in profileList repeat the following steps:
8.1. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken skipped
 ProfileToken := profile.@token
8.2. The DUT responds with GetMetadataConfigurationsResponse with parameters
» Configurations list =: metadataConfList

8.3. If metadataConfList contains at least two items with the same @token, FAIL the test
and skip other steps.

8.4. If metadataConfCompleteList does not contain at least one item with @token from
metadataConfList, FAIL the test and skip other steps.

8.5. If profile.Configurations contains Metadata:

8.5.1. If metadataConfList does not contain item with @token =
profile.Configurations.Metadata.@token, FAIL the test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetMetadataConfigurationsResponse message.

+ DUT did not send GetProfilesResponse message.

5.8.1.3 PROFILES AND METADATA CONFIGURATIONS
CONSISTENCY

Test Case ID: MEDIA2-8-1-3

196 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Specification Coverage: Get configurations, Get media profiles, Metadata configuration.

Feature Under Test: GetMetadataConfigurations, GetProfiles
WSDL Reference: media2.wsdl
Test Purpose: To verify all Media Profiles are consistent with Metadata Configurations.

Pre-Requisite: Media2 Service is received from the DUT. Metadata feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := Metadata
4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. For each Media Profile profile in profileList, which contains Configurations.Metadata repeat
the following steps:

5.1. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken := profile.Configurations.Metadata.@token
» ProfileToken skipped

5.2. The DUT responds with GetMetadataConfigurationsResponse with parameters
+ Configurations list =: metadataConfList

5.3. If metadataConfList[0] is not equal to profile.Configurations.Metadata, FAIL the test
and skip other steps.

Test Result:
PASS -

* DUT passes all assertions.

www.onvif.org 197

O n VI F ® | Standardizing IP Connectivity
for Physical Security

FAIL -

» DUT did not send GetProfilesResponse message.

+ DUT did not send GetMetadataConfigurationsResponse message.
Note: The following fields are compared at step 5.3:

* Name

* CompressionType

» Geolocation

+ PTZStatus.Status

» PTZStatus.Position

» Events.Filter (only field presence will be compared)

» Events.SubscriptionPolicy (only field presence will be compared)

* Analytics

+ AnalyticsEngineConfiguration.AnalyticsModule list (Type and Name will be used as key.
Parameters item will not be compared).

5.8.1.4 GET METADATA CONFIGURATIONS — INVALID TOKEN

Test Case ID: MEDIA2-8-1-4

Specification Coverage: Get configurations, Metadata configuration.
Feature Under Test: GetMetadataConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetMetadataConfigurations with invalid
token.

Pre-Requisite: Media2 Service is received from the DUT. Metadata feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.

2. Start the DUT.

198 www.onvif.org

ONVIE® | imsgres

3. ONVIF Client retrieves Metadata Configurations list by following the procedure mentioned
in Annex A.30 with the following input and output parameters

» out metadataConfList - Metadata Configurations list
4. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken := other than listed in metadataConfList
» ProfileToken skipped
5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault

message

5.9 Analytics Configuration

5.9.1 GET ANALYTICS CONFIGURATIONS

Test Case ID: MEDIA2-9-1-1

Specification Coverage: Get configurations, Analytics configuration.
Feature Under Test: GetAnalyticsConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving complete Analytics Configuration List, Analytics Configuration by
Configuration token and compatible Analytics Configuration by Profile token.

Pre-Requisite: Media2 Service is received from the DUT. Analytics feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

www.onvif.org 199

OnviF | empnggre

2. Start the DUT.

3. ONVIF Client retrieves Analytics Configurations list by following the procedure mentioned in
Annex A.31 with the following input and output parameters

» out analyticsConfCompleteList - Analytics Configurations list

4. If analyticsConfCompleteList contains at least two items with the same @token, FAIL the
test and skip other steps.

5. For each analyticsConfiguration in analyticsConfCompleteList repeat the following steps:
5.1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken := analyticsConfiguration.@token
 ProfileToken skipped
5.2. The DUT responds with GetAnalyticsConfigurationsResponse with parameters
» Configurations list =: analyticsConfList
5.3. If analyticsConfList is empty, FAIL the test and skip other steps.
5.4. If analyticsConfList contains more than one item, FAIL the test and skip other steps.

5.5. If analyticsConfList does not contain item with @token =
analyticsConfiguration.@token, FAIL the test and skip other steps.

6. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := Analytics
7. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
8. For each Media Profile profile in profileList repeat the following steps:
8.1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken := profile.@token

8.2. The DUT responds with GetAnalyticsConfigurationsResponse with parameters

200 www.onvif.org

ONVIE® | imsgres

» Configurations list =: analyticsConfList

8.3. If analyticsConfList contains at least two items with the same @token, FAIL the test
and skip other steps.

8.4. If analyticsConfCompleteList does not contain at least one item with @token from
analyticsConfList, FAIL the test and skip other steps.

8.5. If profile.Configurations contains Analytics:

8.5.1. If analyticsConfList does not contain item with @token =
profile.Configurations.Analytics. @token, FAIL the test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
« DUT did not send GetAnalyticsConfigurationsResponse message.

» DUT did not send GetProfilesResponse message.

5.9.2 PROFILES AND ANALYTICS CONFIGURATIONS
CONSISTENCY

Test Case ID: MEDIA2-9-1-2

Specification Coverage: Get configurations, Get media profiles, Analytics configuration.
Feature Under Test: GetAnalyticsConfigurations, GetProfiles

WSDL Reference: media2.wsdl

Test Purpose: To verify all Media Profiles are consistent with Analytics Configurations.

Pre-Requisite: Media2 Service is received from the DUT. Analytics feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

www.onvif.org 201

O n VI F ® | Standardizing IP Connectivity
for Physical Security

2. Start the DUT.

3. ONVIF Client invokes GetProfiles request with parameters
* Token skipped
* Type[0] := Analytics

4. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

5. For each Media Profile profile in profileList, which contains Configurations.Analytics repeat
the following steps:

5.1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken := profile.Configurations.Analytics.@token
* ProfileToken skipped

5.2. The DUT responds with GetAnalyticsConfigurationsResponse with parameters
» Configurations list =: analyticsConfList

5.3. [If analyticsConfList[0] is not equal to profile.Configurations.Analytics, FAIL the test and
skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
» DUT did not send GetAnalyticsConfigurationsResponse message.
Note: The following fields are compared at step 5.3:

« Name

AnalyticsEngineConfiguration.AnalyticsModule list (Type and Name will be used as key.
Parameters item will not be compared).

AnalyticsEngineConfiguration.RuleEngineConfiguration list (Type and Name will be used as
key. Parameters item will not be compared).

202 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

5.9.3 GET ANALYTICS CONFIGURATIONS — INVALID
TOKEN

Test Case ID: MEDIA2-9-1-3

Specification Coverage: Get configurations, Analytics configuration.
Feature Under Test: GetAnalyticsConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify SOAP 1.2 Fault receiving in case of GetAnalyticsConfigurations with invalid
token.

Pre-Requisite: Media2 Service is received from the DUT. Analytics feature under Media2 Service
is supported by the DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Analytics Configurations list by following the procedure mentioned in
Annex A.31 with the following input and output parameters

» out analyticsConfList - Analytics Configurations list
4. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken := other than listed in analyticsConfList
» ProfileToken skipped
5. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

+ The DUT did not send the env:Sender/ter:InvalidArgVal/ter:NoConfig SOAP 1.2 fault
message

www.onvif.org 203

O n VI F ® | Standardizing IP Connectivity
for Physical Security

5.10 Masks Configuration

5.10.1 CREATE MASKS

Test Case ID: MEDIA2-10-1-1
Specification Coverage: CreateMask, DeleteMask (ONVIF Media2 Service Specification)
Feature Under Test: CreateMask, DeleteMask
WSDL Reference: media2.wsdl
Test Purpose: To verify the DUT creates and removes Mask.
Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Client configures device for adding of new mask by following the procedure
mentioned in Annex A.32 with the following input and output parameters

* out maskOptions - Options to create mask with

* out vscToken - Token of Video Source Configuration to be used

» out maskToRestore - Mask to restore (if a Mask was removed)
4. ONVIF Client invokes CreateMask request with parameters

» token :="TestMask" (note: this token can be ignored by DUT)

* ConfigurationToken := vscToken

L]

If maskOptions.RectangleOnly is false or skipped:

* Polygon = Point[0].@x="-0.4", Point[0]. @y="-0.2", Point[1].@x="-0.2",
Point[1].@y="0.3", Point[2].@x="0.1", Point[2].@y="0.4", Point[3].@x="0.3",
Point[3].@y="-0.3"

If maskOptions.RectangleOnly = true:

204 www.onvif.org

ONVIE® | imsgres

* Polygon = Point[0].@x="-0.5", Point[0]. @y="-0.5", Point[1].@x="-0.5",
Point[1].@y="0.5", Point[2].@x="0.5", Point[2]. @y="0.5", Point[3].@x="0.5",
Point[3].@y="-0.5"

» Type := first value from maskOptions.Types list
* If Type = "Color":
« If maskOptions.Color.ColorList is specified:
+ Color := first value that are listed in maskOptions.Color.ColorList
* If maskOptions.Color.ColorspaceRange is specified:

* Color.@Colorspace := Colorspace value of the first item that is listed in
maskOptions.Color.ColorspaceRange

* Color@X := value from the range [X.Min,X.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

+ Color@Y := value from the range [Y.Min,Y.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

* Color@Z := value from the range [Z.Min,ZMax] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

* Enabled := false
5. DUT responds with CreateMaskResponse message with parameters
» Token of the created mask =: maskToken
6. ONVIF Client invokes GetMasks request with parameters
» Token := maskToken
» ConfigurationToken skipped
7. DUT responds with GetMasksResponse message with parameters
* Masks =: maskList
8. If maskList[0] is not equal to Mask from step 4, FAIL the test and skip other steps.
9. ONVIF Client invokes DeleteMask request with parameters

* Token := maskToken

www.onvif.org 205

O n V I F ® Standardizing IP Connectivity
for Physical Security

10.DUT responds with DeleteMaskResponse message

11. ONVIF Client invokes GetMasks request with parameters
* Token skipped
» ConfigurationToken := videoSourceConf1[0].@Token
12.DUT responds with GetMasksResponse message with parameters
* Masks =: maskList2
13.1f maskList2 contains Mask with @Token = maskToken, FAIL the test and skip other steps.
14.ONVIF Client restores the DUT state.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ The DUT did not send GetMasksResponse message(s).
+ The DUT did not send CreateMaskResponse message.
+ The DUT did not send DeleteMaskResponse message.

Note: The following fields are compared at step 8:

ConfigurationToken

Polygon, only the following will be checked:
« the field is specified

* list contains at least 3 points

Type

Color (if Type = "Color")

Enabled

5.10.2 GET MASKS

Test Case ID: MEDIA2-10-1-2

206 www.onvif.org

ONVIE® | imsgres

Specification Coverage: GetMasks (ONVIF Media2 Service Specification)

Feature Under Test: GetMasks
WSDL Reference: media2.wsdl

Test Purpose: To verify DUT sends complete Masks list and list of Masks, which are compatible
with specific Video Source Configuration.

Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client configures device to add mask if no masks exists by following the procedure
mentioned in Annex A.34 with the following input and output parameters:

» out maskToRemove - Mask to remove (if a Mask was created)
4. ONVIF Client invokes GetMasks request with parameters
» Token skipped
» ConfigurationToken skipped
5. DUT responds with GetMasksResponse message with parameters
* Masks =: maskConfCompleteList1
6. If maskConfCompleteList1 is empty, FAIL the test and skip other steps.

7. If maskConfCompleteList1 contains at least two items with the same @token, FAIL the test
and skip other steps.

8. For each Mask mask in maskConfCompleteList1 repeat the following steps:
8.1. ONVIF Client invokes GetMasks request with parameters
+ Token := mask.@token
» ConfigurationToken skipped
8.2. DUT responds with GetMasksResponse message with parameters

e Masks =: maskList1

www.onvif.org 207

O n VI F ® | Standardizing IP Connectivity
for Physical Security

8.3. If maskList1 is empty, FAIL the test and skip other steps.

8.4. If maskList1 contains more than one item, FAIL the test and skip other steps.
8.5. If maskList1[0].@token != mask.@token, FAIL the test and skip other steps.
8.6. If maskList1[0] is not equal to mask, FAIL the test and skip other steps.

9. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

10.For each Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

10.1. ONVIF Client invokes GetMasks request with parameters
» Token skipped
» ConfigurationToken := videoSourceConf1.@Token

10.2. DUT responds with GetMasksResponse message with parameters
* Masks =: maskConfList1

10.3. If maskConfList1 contains at least two items with the same @token, FAIL the test and
skip other steps.

10.4. If maskConfCompleteList1 does not contain at least one item with @token from
maskConfList1 list, FAIL the test and skip other steps.

11. ONVIF Client restores the DUT state if required.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
+ The DUT did not send GetMasksResponse message(s).
Note: The following fields are compared at step 8.6:

« token

208 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

ConfigurationToken
Polygon

Type

Color

Enabled

5.10.3 SET MASKS

Test Case ID: MEDIA2-10-1-3

Specification Coverage: SetMask, DeleteMask (ONVIF Media2 Service Specification)

Feature Under Test: SetMask

WSDL Reference: media2.wsdl

Test Purpose: To verify the DUT changes and removes Mask.

Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.

Test Configuration: ONVIF Client and DUT

Test Procedure:

1.

2.

Start an ONVIF Client.
Start the DUT.

ONVIF Client configures device for adding of new mask by following the procedure
mentioned in Annex A.32 with the following input and output parameters

* out maskOptions - Options to create mask with

» out vscToken - Token of Video Source Configuration to be used
» out maskToRestore - Mask to restore (if a Mask was removed)
Set maskType := first value from maskOptions.Types list

ONVIF Client creates mask by following the procedure mentioned in Annex A.35 with the
following input and output parameters

* in vscToken - Video Source configuration token

* in maskOptions - Options of the mask

www.onvif.org 209

ONVIE® | imsgres

* in maskType - Mask type
» out maskToken - Token of the created mask

6. ONVIF Client invokes SetMask request with parameters
» token := maskToken

» ConfigurationToken := vscToken

If maskOptions.RectangleOnly is false or skipped:

* Polygon = Point[0].@x="-0.5", Point[0].@y="-0.3", Point[1].@x="-0.3",
Point[1].@y="0.4", Point[2].@x="0.2", Point[2]. @y="0.5", Point[3].@x="0.4",
Point[3].@y="-0.4"

If maskOptions.RectangleOnly = true:

* Polygon = Point[0].@x="-0.6", Point[0]. @y="-0.6", Point[1].@x="-0.6",
Point[1].@y="0.6", Point[2].@x="0.6", Point[2].@y="0.6", Point[3].@x="0.6",
Point[3].@y="-0.6"

* Type := last value from maskOptions.Types list

If Type = "Color":
» If maskOptions.Color.ColorList is specified:

+ Color := last value that are listed in maskQOptions.Color.ColorList
 If maskOptions.Color.ColorspaceRange is specified:

+ Color.@Colorspace := Colorspace value of the last item that is listed in
maskOptions.Color.ColorspaceRange

+ Color@X := value from the range [X.Min,X.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

+ Color@Y := value from the range [Y.Min,Y.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

+ Color@Z := value from the range [Z.Min,ZMax] of the same item in
maskQOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

¢« Enabled := true

7. DUT responds with SetMaskResponse message

210 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

8. ONVIF Client invokes GetMasks request with parameters

» Token := maskToken
» ConfigurationToken skipped
9. DUT responds with GetMasksResponse message with parameters
* Masks =: maskList
10.If maskList[0] is not equal to Mask from step 6, FAIL the test and skip other steps.
11. ONVIF Client invokes DeleteMask request with parameters
» Token := maskToken
12.DUT responds with DeleteMaskResponse message
13.ONVIF Client invokes GetMasks request with parameters
» Token skipped
» ConfigurationToken := videoSourceConf1[0].@Token
14.DUT responds with GetMasksResponse message with parameters
* Masks =: maskList2
15.1f maskList2 contains Mask with @Token = maskToken, FAIL the test and skip other steps.
16.ONVIF Client restores the DUT state.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* The DUT did not send SetMaskResponse message.
» The DUT did not send GetMasksResponse message(s).
* The DUT did not send DeleteMaskResponse message.
Note: The following fields are compared at step 10:

» ConfigurationToken

www.onvif.org 211

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Polygon, only the following will be checked:
« the field is specified
+ list contains at least 3 points

+ Type

* Color (if Type = "Color")

* Enabled

5.10.4 GET MASK OPTIONS

Test Case ID: MEDIA2-10-1-4
Specification Coverage: GetMaskOptions (ONVIF Media2 Service Specification)
Feature Under Test: GetMaskOptions
WSDL Reference: media2.wsdl
Test Purpose: To verify consistency in Mask Options.
Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

4. Foreach Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

4.1. ONVIF Client invokes GetMaskOptions request with parameters
» ConfigurationToken := videoSourceConf1.@token

4.2. DUT responds with GetMaskOptionsResponse message with parameters

212 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» MaskOptions =: maskOptions
4.3. If maskOptions.MaxMasks < 0, FAIL the test and skip other steps.
4.4. If maskOptions.MaxPoints < 3, FAIL the test and skip other steps.
4.5. If maskOptions does not have Types element, FAIL the test and skip other steps.

4.6. If maskOptions has Color.ColorspaceRange element:

46.1. If maskOptions.Color.ColorspaceRange.X.Min >
maskOptions.Color.ColorspaceRange.X.Max, FAIL the test and skip other
steps.

46.2. If maskOptions.Color.ColorspaceRange.Y.Min >
maskOptions.Color.ColorspaceRange.Y.Max, FAIL the test and skip other
steps.

46.3. If maskQOptions.Color.ColorspaceRange.Z.Min >
maskOptions.Color.ColorspaceRange.Z.Max, FAIL the test and skip other
steps.

Test Result:
PASS —

* DUT passes all assertions.
FAIL -

* The DUT did not send GetMaskOptionsResponse message(s).

5.10.5 MASK CONFIGURATIONS AND MASK OPTIONS
CONSISTENCY

Test Case ID: MEDIA2-10-1-5

Specification Coverage: GetMasks, GetMaskOptions (ONVIF Media2 Service Specification)
Feature Under Test: GetMasks, GetMaskOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify all Mask configurations are consistent with Mask Options.

www.onvif.org 213

ONVIE® | imsgres

Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

4. For each Video Source Configuration videoSourceConf1 in videoSourceConfList1 repeat
the following steps:

4.1. ONVIF Client invokes GetMasks request with parameters
» Token skipped
» ConfigurationToken := videoSourceConf1.@token

4.2. DUT responds with GetMasksResponse message with parameters
* Masks =: maskConfList1

4.3. ONVIF Client invokes GetMaskOptions request with parameters
» ConfigurationToken := videoSourceConf1.@token

4.4. DUT responds with GetMaskOptionsResponse message with parameters
» MaskOptions := maskOptions

4.5. Set colorMask := empty

4.6. For each Mask mask in maskConfList1 repeat the following steps:

4.6.1. If mask.ConfigurationToken is not equal to videoSourceConf1.@token, FAIL
the test and skip other steps.

4.6.2. If maskOptions does not contain Types element with value is equal to
mask.Type, FAIL the test and skip other steps.

4.6.3. If maskOptions.RectangleOnly = true and mask.Polygon does not have four
points, FAIL the test and skip other steps.

214 www.onvif.org

4.6.4.

4.6.5.

O n VI F ® | Standardizing IP Connectivity
for Physical Security

If number of points of mask.Polygon > maskOptions.MaxPoints, FAIL the test

and skip other steps.
If mask.Color is specified:
4.6.5.1. If mask.Color@Colorspace is skipped:

4.6.5.1.1. Set mask.Color@Colorspace = http://www.onvif.org/
ver10/colorspace/YCbCr

4.6.5.2. If maskOptions.Color has at least one ColorList element:

46.521. For each ColorList element colorList in
maskOptions.Color repeat the following steps:

4.6.5.2.1.1. If colorList@Colorspace is skipped:

46.521.11. Set
colorList@Colorspace
= http://www.onvif.org/
ver10/colorspace/
YCbCr

4.6.5.2.1.2. If maskOptions.Color does not contain
ColorList element with @X
mask.Color@X, and with @Y
mask.Color.@Y, and with @Z
mask.Color.@Z, and with @Colorspace
= mask.Color@Colorspace, FAIL the
test and skip other steps.

4.6.5.3. If maskOptions.Color has at least one ColorspaceRange element:

46.5.3.1. Set maskOptions.Color.ColorspaceRange =
colorspaceRange1, where
maskOQOptions.Color.ColorspaceRange is the first
ColorspaceRange element that corresponds the
following requirements:

4.6.5.3.1.1. colorspaceRange1.@Colorspace =
mask.Color.@Colorspace.

4.6.5.3.1.2. colorspaceRange1.X.Min <=
mask.Color.@X

www.onvif.org 215

O n V I F ® Standardizing IP Connectivity
for Physical Security

4.6.5.3.1.3. colorspaceRange1.X.Max >=
mask.Color.@X

4.6.5.3.1.4. colorspaceRange1.Y.Min <=
mask.Color.@Y

4.6.5.3.1.5. colorspaceRange1.Y.Max >=
mask.Color.@Y

4.6.5.3.1.6. colorspaceRange1.Z.Min <=
mask.Color.@Z

4.6.5.3.1.7. colorspaceRange1.Z.Max >=
mask.Color.@Z

4.6.5.3.2. If colorspaceRange1 is empty, FAIL the test and skip
other steps.

4.6.5.4. If MaskOptions.SingleColorOnly = true
4.6.5.4.1. If colorMask is empty:
46.54.1.1. colorMask := mask.Color
4.6.54.1.2. GoTo step 4.6

46.54.2. If colorMask is not equal to mask.Color, FAIL the test
and skip other steps.

Test Result:
PASS -
» DUT passes all assertions.
FAIL -
* The DUT did not send GetMasksResponse message(s).

* The DUT did not send GetMaskOptionsResponse message(s).

5.10.6 SINGLE COLOR ONLY PARAMETER

Test Case ID: MEDIA2-10-1-6
Specification Coverage: GetMaskOptions (ONVIF Media2 Service Specification)

216 www.onvif.org

OnviF | empnggre

Feature Under Test: GetMaskOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify Masks Color consistency if SingleColorOnly is present and true in Mask
Options.

Pre-Requisite: Media2 Service feature is supported by DUT. Mask feature is supported by DUT.
Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

» out videoSourceConfList1 - Video Source Configurations list

4. Foreach Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

4.1. ONVIF Client invokes GetMaskOptions request with parameters
» ConfigurationToken := videoSourceConf1.@Token

4.2. DUT responds with GetMaskOptionsResponse message with parameters
» MaskOptions =: maskOptions

4.3. If maskOptions.SingleColorOnly != true or maskOptions.Types list does not contain
"Color" or maskOptions.MaxMasks < 2 go to step 4.

4.4. ONVIF Client removes all Masks from Video Source Configuration by following the
procedure mentioned in Annex A.36 with the following input and output parameters

* in videoSourceConf1.@token - Video Source Configuration token
4.5. Set maskType := “Color”

4.6. ONVIF Client creates mask by following the procedure mentioned in Annex A.35 with
the following input and output parameters

* in vscToken - Video Source configuration token

* in maskOptions - Options of the mask

www.onvif.org 217

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in maskType - Mask type
» out maskToken1 - Token of the created mask
4.7. ONVIF Client invokes CreateMask request with parameters
+ token := "TestMask" (note: this token can be ignored by DUT)
» ConfigurationToken := videoSourceConf1.@token

* Polygon := Point[0]l@x="-0.4", Point[0].@y="-0.2", Point[1].@x="-0.2",
Point[1].@y="0.3", Point[2].@x="0.1", Point[2].@y="0.4", Point[3].@x="0.3",
Point[3].@y="-0.3" if maskOptions.RectangleOnly is false or skipped.
Else Polygon := Point[0].@x="-0.5", Point[0].@y="-0.5", Point[1].@x="-0.5",
Point[1].@y="0.5", Point[2].@x="0.5", Point[2].@y="0.5", Point[3].@x="0.5",
Point[3].@y="-0.5"

* Type := “Color”
+ Enabled := false

4.8. DUT responds with CreateMaskResponse message with parameters
» Token of the created mask =: maskToken2

4.9. ONVIF Client invokes GetMasks request with parameters
» Token := maskToken1
» ConfigurationToken skipped

4.10. DUT responds with GetMasksResponse message with parameters
» Masks =: maskList1

4.11. ONVIF Client invokes GetMasks request with parameters
» Token := maskToken2
» ConfigurationToken skipped

4.12. DUT responds with GetMasksResponse message with parameters
* Masks =: maskList2

4.13. If maskList2[0].Color is not equal to maskList1[0].Color, FAIL the test and skip other
steps.

218 www.onvif.org

ONVIE® | imsgres

4.14. ONVIF Client invokes SetMask request with parameters

+ token := maskToken2
» ConfigurationToken := vscToken

* Polygon := Point[0]l@x="-0.5", Point[0].@y="-0.3", Point[1].@x="-0.3",
Point[1].@y="0.4", Point[2].@x="0.2", Point[2].@y="0.5", Point[3].@x="0.4",
Point[3].@y="-0.4" if maskOptions.RectangleOnly is false or skipped.
Else Polygon := Point[0]l.@x="-0.6", Point[0].@y="-0.6", Point[1].@x="-0.6",
Point[1].@y="0.6", Point[2].@x="0.6", Point[2].@y="0.6", Point[3].@x="0.6",
Point[3].@y="-0.6"

* Type :="Color"
 If maskOptions.Color.ColorList is specified:

» Color := last value that are listed in maskOptions.Color.ColorList
 If maskOptions.Color.ColorspaceRange is specified:

» Color.@Colorspace := Colorspace value of the last item that is listed in
maskOptions.Color.ColorspaceRange

* Color@X := value from the range [X.Min,X.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

» Color@Y := value from the range [Y.Min,Y.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

* Color@Z := value from the range [Z.Min,Z.Max] of the same item in
maskOQOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

» Enabled := true
4.15. DUT responds with SetMaskResponse message
4.16. ONVIF Client invokes GetMasks request with parameters
» Token := maskToken1
+ ConfigurationToken skipped
4.17. DUT responds with GetMasksResponse message with parameters

» Masks =: maskList3

www.onvif.org 219

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4.18. If maskList3[0].Color is not equal to Color value from step 4.14, FAIL the test and skip

other steps.
4.19. ONVIF Client restores the DUT state.
5. PASS the test.
Test Result:
PASS -
» DUT passes all assertions.
FAIL -
» The DUT did not send CreateMaskResponse message(s).
* The DUT did not send SetMaskResponse message(s).
* The DUT did not send GetMasksResponse message(s).

» The DUT did not send GetMaskOptionsResponse message(s).

5.11 Audio Clip
5.11.1 Audio Clip Configuration

5.11.1.1 GET AUDIO CLIPS

Test Case ID: MEDIA2-11-1-1

Specification Coverage: Audio Clip Configuration, GetAudioClips.
Feature Under Test: GetAudioClips

WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving of complete Audio Clips list, and retrieving of specific Audio
Clip by token. To verify compatibility between Audio Clip Configuration and Media2 Capabilities. To
verify compatibility between Audio Clip Configuration and Audio Output list. To verify compatibility
between Audio Clip Configuration and Schedule list.

Pre-Requisite:Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Audio Clip is supported by Device.

220 www.onvif.org

ONVIE® | imsgres

Test Configuration: ONVIF Client and DUT.
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetAudioClips request with parameters
» Token skipped
4. DUT responds with GetAudioClipsResponse message with parameters
» GetAudioClipsResponseltem =: audioClipsCompleteList

5. If audioClipsCompleteList contains at least two items with the same Token, FAIL the test
and skip other steps.

6. If audioClipsCompleteList is not empty

6.1. ONVIF Client retrieves Audio Output list by following the procedure mentioned in
Annex A.37 with the following input and output parameters

» out audioOutputsList - Audio Outputs list

6.2. ONVIF Client retrieves Media2 Service Capabilities by following the procedure
mentioned in Annex A.2 with the following input and output parameters

» out cap - Media2 Service Capabilities
6.3. If DUT supports Schedule Service

6.3.1. ONVIF Client retrieves a complete list of schedules info by following the
procedure mentioned in Annex A.38 with the following input and output
parameters

+ out schedulelnfoCompleteList - complete list of schedules info
7. For each Audio Clip item audioClip in audioClipsCompleteList repeat the following steps:
7.1. ONVIF Client invokes GetAudioClips request with parameters
» Token: audioClip.Token
7.2. DUT responds with GetAudioClipsResponse message with parameters

* GetAudioClipsResponseltem =: audioClipsList

www.onvif.org 221

O n VI F ® | Standardizing IP Connectivity
for Physical Security

7.3. If audioClipsList is empty, FAIL the test and skip other steps.

7.4. If audioClipsList contains more than one item, FAIL the test and skip other steps.

7.5. If audioClipsList does not contain item with Token = audioClip.Token, FAIL the test and
skip other steps.

7.6. If audioClipsList[0] item is not equal to audioClip, FAIL the test and skip other steps.

7.7. For each AudioOutputToken item (audioOutputToken) in
audioClipsList[0].Configuration repeat the following steps:

7.7.1. If audioOutputsList does not contain audioOutputToken, FAIL the test and skip
other steps.

7.8. If cap.AudioClipCapabilities.SupportedAudioClipFormat list does not contain
audioClipsList[0].Configuration.Type value, FAIL the test and skip other steps.

7.9. If audioClipsList[0].Configuration contains ScheduleToken and Schedule Service is not
supported, FAIL the test and skip other steps.

7.10. If audioClipsList[0].Configuration contains ScheduleToken

7.10.1. If scheduleInfoCompleteList list does not contain Schedulelnfo item with
@token equals to audioClipsList[0].Configuration.ScheduleToken value, FAIL
the test and skip other steps.

Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioClipsResponse message.
Note: The following fields are compared at step 7.6:
» Configuration.Enabled
» Configuration.Name
» Configuration.AudioOutputToken list

+ Configuration.Type

222 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Configuration.RepeatCycles
» Configuration.Repeatinterval
+ Configuration.AudioOutputLevel

+ Configuration.ScheduleToken

5.11.1.2 ADD AUDIO CLIP

Test Case ID: MEDIA2-11-1-2

Specification Coverage: AddAudioClip.

Feature Under Test: AddAudioClip

WSDL Reference: media2.wsdl

Test Purpose: To verify adding of Audio Clips without token specified in the request.

Pre-Requisite:Media2 Service is received from the DUT. Audio Clip is supported by Device. WAV
with LPCM audio clip format is supported by the DUT. Either there is a free space for a new Audio
Clip adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client prepare a free space for adding of a new Audio Clip by following the procedure
mentioned in Annex A.39.

4. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token
* out outputLevelRange - Output Level Range
5. Set audioClipFormat := "audio/vnd.wave;codec=1".

6. Set currentTime := current time.

www.onvif.org 223

OnviF | gomansg

7. ONVIF Client invokes AddAudioClip request with parameters

* Token skipped
» Configuration.Enabled := true
» Configuration.Name := "ONVIF Test Name"
» Configuration.AudioOutputToken[0] := outputToken
» Configuration.Type := audioClipFormat
» Configuration.RepeatCycles := 1
» Configuration.Repeatinterval := 60
» Configuration.AudioOutputLevel := outputLevelRange.Min
» Configuration.ScheduleToken skipped
8. DUT responds with AddAudioClipResponse message with parameters
» Token =: audioClipToken
* UploadUri =: uploadUri
» ExpiryTime =: expiryTime

9. If expiryTime is less than currentTime or equal to currentTime, FAIL the test and skip other
steps.

10.ONVIF Client invokes HTTP POST to uploadUri with parameters
* HTTP Header [Content-Type] := MIME type for audio that corresponds to audioClipFormat
* HTTP Body := audio file with format that corresponds to audioClipFormat

11. The DUT responds with HTTP 200 OK message.

12.ONVIF Client retrieves Audio Clips list by following the procedure mentioned in Annex A.42
with the following input and output parameters

» out audioClipsList - Audio Clips list

13.If audioClipsList does not contain item with Token equals to audioClipToken, FAIL the test
and skip other steps.

14.ONVIF Client invokes GetAudioClips request with parameters

224 www.onvif.org

OnviF | empnggre

» Token := audioClipToken
15.DUT responds with GetAudioClipsResponse message with parameters
» GetAudioClipsResponseltem =: audioClipsList
16.If audioClipsList is empty, FAIL the test and skip other steps.
17.1f audioClipsList contains more than one item, FAIL the test and skip other steps.

18.If audioClipsList does not contain item with Token = audioClip Token, FAIL the test and skip
other steps.

19.If audioClipsList[0].Configuration.Enabled is not equal to "true", FAIL the test and skip other
steps.

20.If audioClipsList[0].Configuration.Name is not equal to "ONVIF Test Name", FAIL the test
and skip other steps.

21.1f audioClipsList[0].Configuration.AudioOutputToken[0] is not equal to outputToken, FAIL the
test and skip other steps.

22.If audioClipsList[0].Configuration.AudioOutputToken list contains more than one item, FAIL
the test and skip other steps.

23.1f audioClipsList[0].Configuration.Type is not equal to audioClipFormat, FAIL the test and
skip other steps.

24 1f audioClipsList[0].Configuration.RepeatCycles is not equal 1, FAIL the test and skip other
steps.

25.If audioClipsList[0].Configuration.Repeatinterval is not equal 60, FAIL the test and skip other
steps.

26.1f audioClipsList[0].Configuration.AudioOutputLevel is not equal to outputLevelRange.Min,
FAIL the test and skip other steps.

27.1f audioClipsList[0].ScheduleToken is present, FAIL the test and skip other steps.
28.0ONVIF Client invokes DeleteAudioClip request with parameters

» Token := audioClipToken
29.DUT responds with DeleteAudioClipResponse message.

30.ONVIF Client retrieves Audio Clips list by following the procedure mentioned in Annex A.42
with the following input and output parameters

www.onvif.org 225

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out audioClipsList - Audio Clips list

31.If audioClipsList contains item with Token equals to audioClipToken, FAIL the test and skip
other steps.

Test Result:

PASS -
» DUT passes all assertions.

FAIL -
« DUT did not send AddAudioClipResponse message.
» DUT did not send GetAudioClipsResponse message.

* DUT did not send DeleteAudioClipResponse message.

5.11.1.3 ADD AUDIO CLIP - WITH TOKEN IN REQUEST

Test Case ID: MEDIA2-11-1-3

Specification Coverage: AddAudioClip.

Feature Under Test: AddAudioClip

WSDL Reference: media2.wsdl

Test Purpose: To verify adding of Audio Clips with a token specified in the request.

Pre-Requisite:Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Audio Clip is supported by Device. WAV with LPCM audio clip format is supported by the DUT.
Either there is a free space for a new Audio Clip adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

226 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out outputToken - Output Token
» out outputlLevelRange - Output Level Range
4. Set audioClipFormat := "audio/vnd.wave;codec=1".

5. ONVIF Client prepare a free space for adding of a new Audio Clip by following the procedure
mentioned in Annex A.39.

6. ONVIF Client generates a string token within 36 characters.

7. ONVIF Client invokes AddAudioClip request with parameters

Token := token
» Configuration.Enabled := true
+ Configuration.Name := "ONVIF Test Name"
» Configuration.AudioOutputToken skipped
» Configuration.Type := audioClipFormat
» Configuration.RepeatCycles := 0
» Configuration.Repeatinterval skipped
» Configuration.AudioOutputLevel skipped
» Configuration.ScheduleToken skipped
8. DUT responds with AddAudioClipResponse message with parameters
» Token =: audioClipToken
* UploadUri =: uploadUri
* ExpiryTime
9. If audioClipToken is not equal to token, FAIL the test and skip other steps.
10.ONVIF Client invokes HTTP POST to uploadUri with parameters
* HTTP Header [Content-Type] := MIME type for audio that corresponds to audioClipFormat
* HTTP Body := audio file with format that corresponds to audioClipFormat

11. The DUT responds with HTTP 200 OK message.

www.onvif.org 227

O n VI F ® | Standardizing IP Connectivity
for Physical Security

12.ONVIF Client invokes GetAudioClips request with parameters

» Token := audioClipToken
13.DUT responds with GetAudioClipsResponse message with parameters
* GetAudioClipsResponseltem =: audioClipsList
14.1f audioClipsList is empty, FAIL the test and skip other steps.
15.If audioClipsList contains more than one item, FAIL the test and skip other steps.

16.If audioClipsList does not contain item with Token = audioClip Token, FAIL the test and skip
other steps.

17.1f audioClipsList[0].Configuration.RepeatCycles is not equal 0, FAIL the test and skip other
steps.

18.If audioClipsList[0].Configuration.Repeatinterval is present, FAIL the test and skip other
steps.

19.ONVIF Client invokes DeleteAudioClip request with parameters
» Token := audioClipToken
20.DUT responds with DeleteAudioClipResponse message.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send AddAudioClipResponse message.

» DUT did not send GetAudioClipsResponse message.

5.11.1.4 SET AUDIO CLIP

Test Case ID: MEDIA2-11-1-4
Specification Coverage: SetAudioClip.

Feature Under Test: SetAudioClip

228 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

WSDL Reference: media2.wsdl
Test Purpose: To verify updating of Audio Clips.

Pre-Requisite:Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Audio Clip is supported by Device. WAV with LPCM audio clip format is supported by the DUT.
Either there is a free space for a new Audio Clip adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token
» out outputLevelRange - Output Level Range
4. Set audioClipFormat := "audio/vnd.wave;codec=1".

5. Set Audio Clip Configuration audioClipConfig with the following fields values

L]

Enabled := false

* Name := "ONVIF Test Name1"

* AudioOutputToken[0] := outputToken

* Type := audioClipFormat

» RepeatCycles skipped

* Repeatinterval skipped

* AudioOutputLevel := outputLevelRange.Min
» ScheduleToken skipped

6. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add

www.onvif.org 229

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out audioClipToken - token of added Audio Clip

7. If audioOutputsList contains more than one item, set audioOutputToken :=
audioOutputsList[1]. Otherwise set audioOutputToken := audioOutputsList]0].

8. ONVIF Client invokes SetAudioClip request with parameters
» Token := audioClipToken
» Configuration.Enabled := true
» Configuration.Name := "ONVIF Test Name2"
» Configuration.AudioOutputToken := audioOutputToken
» Configuration.Type := audioClipFormat
» Configuration.RepeatCycles := -1
* Configuration.Repeatinterval := 60

» Configuration.AudioOutputLevel := outputLevelRange.Max

Configuration.ScheduleToken skipped
9. DUT responds with SetAudioClipResponse message.
10.ONVIF Client invokes GetAudioClips request with parameters
* Token := audioClipToken
11. DUT responds with GetAudioClipsResponse message with parameters
* GetAudioClipsResponseltem =: audioClipsList
12.If audioClipsList is empty, FAIL the test and skip other steps.
13.If audioClipsList contains more than one item, FAIL the test and skip other steps.

14.1f audioClipsList does not contain item with Token = audioClipToken, FAIL the test and skip
other steps.

15.1f audioClipsList[0].Configuration.Enabled is not equal to "true", FAIL the test and skip other
steps.

16. If audioClipsList[0].Configuration.Name is not equal to "ONVIF Test Name2", FAIL the test
and skip other steps.

230 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

17.1f audioClipsList[0].Configuration.AudioOutputToken[0] is not equal to audioOutputToken,
FAIL the test and skip other steps.

18.If audioClipsList[0].Configuration.Type is not equal to audioClipFormat, FAIL the test and
skip other steps.

19.If audioClipsList{0].Configuration.RepeatCycles is not equal to "-1", FAIL the test and skip
other steps.

20.If audioClipsList[0].Configuration.Repeatinterval is not equal to 60, FAIL the test and skip
other steps.

21.1f audioClipsList[0].Configuration.AudioOutputLevel outputLevelRange.Max, FAIL the test
and skip other steps.

22.1f audioClipsList[0].ScheduleToken is present, FAIL the test and skip other steps.
23.ONVIF Client invokes DeleteAudioClip request with parameters
» Token := audioClipToken
24.DUT responds with DeleteAudioClipResponse message.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
« DUT did not send AddAudioClipResponse message.
» DUT did not send SetAudioClipResponse message.
+ DUT did not send GetAudioClipsResponse message.

* DUT did not send DeleteAudioClipResponse message.

5.11.2 Audio Clip Playing

5.11.2.1 PLAY AUDIO CLIP - WAV with LPCM

Test Case ID: MEDIA2-11-2-1

www.onvif.org 231

OnviF | empnggre

Specification Coverage: PlayAudioClip, GetPlayingAudioClips, Audio Clip State

Feature Under Test: PlayAudioClip, GetPlayingAudioClips, tns1:Media/AudioClip/State
WSDL Reference: media2.wsdl, event.wsdl

Test Purpose: To verify playing of WAV with LPCM format Audio Clip. To verify stopping of Audio
Clip playing by ending of Audio Clip. To verify tns1:Media/AudioClip/State event generation on
starting and stopping of playing. To verify getting of Audio Clips playing list.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the
DUT. Pull-Point Notification feature is supported by the DUT. Audio Clip event topic is supported
by the DUT. Audio Clip is supported by the DUT. WAV with LPCM audio clip format is supported
by the DUT. Either there is a free space for a new Audio Clip adding or it is possible to delete any
Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token
» out outputLevelRange - Output Level Range
4. Set Audio Clip Configuration audioClipConfig with the following fields values
» Enabled := true
* Name := "MEDIA2-11-2-1 Test Case"
* AudioOutputToken[0] := outputToken
» Type := "audio/vnd.wave;codec=1"
* RepeatCycles :=0
* Repeatinterval skipped
* AudioOutputLevel := outputLevelRange.Min

» ScheduleToken skipped

232 www.onvif.org

ONVIE® | imsgres

5. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with

the following input and output parameters
* in audioClipConfig - Audio Clip Configuration to add
» out audioClipToken - token of added Audio Clip

6. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/AudioClip/State" - Notification Topic
* out s - Subscription Reference
 out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time
7. ONVIF Client invokes PlayAudioClip request with parameters

» Token := audioClipToken

AudioOutputToken skipped
* Play :=true
* RepeatCycles skipped
8. DUT responds with PlayAudioClipResponse message.

9. ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output Token and Audio Clip Token by following the procedure mentioned in Annex A.44
with the following input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipToken - Audio Clip token

* in outputToken - Audio Output Token

» out message1 - Changed event for requested Audio Output Token and Audio Clip

10.1f message1.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

www.onvif.org 233

OnviF | empnggre

11. If message 1.Message does not contain Data.Simpleltem with Name = "ClipName" and with
Value = "MEDIA2-11-2-1 Test Case", FAIL the test, restore the DUT and skip other steps.

12.ONVIF Client invokes GetPlayingAudioClips request.
13.DUT responds with GetPlayingAudioClipsResponse message with parameters
» PlayingAudioClips list := playingAudioClipsList

14.1f playingAudioClipsList does not contain item with Token = audioClipToken, FAIL the test,
restore the DUT and skip other steps.

15. Set playingAudioClip := item with Token = audioClipToken from playingAudioClipsList.

16.If playingAudioClip.Name is not equal to "MEDIA2-11-2-1 Test Case", FAIL the test, restore
the DUT and skip other steps.

17.1f playingAudioClip.AudioOutputToken list contains more than one item, FAIL the test, restore
the DUT and skip other steps.

18.If playingAudioClip.AudioOutputToken[0] is not equal to outputToken, FAIL the test, restore
the DUT and skip other steps.

19.If playingAudioClip.AudioOutputLevel is not equal to outputLevelRange.Min, FAIL the test,
restore the DUT and skip other steps.

20.1f playingAudioClip.RepeatsLeft is not equal to 0, FAIL the test, restore the DUT and skip
other steps.

21.Set audioClipPlayingDuration := duration of uploaded Audio Clip playing.
22.Wait for audioClipPlayingDuration.

23.0ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time
* in audioClipToken - Audio Clip token

* in outputToken - Audio Output Token

234 www.onvif.org

ONVIE® | imsgres

» out message? - Changed event for requested Audio Output Token and Audio Clip

24.1f message2.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

25.0NVIF Client invokes GetPlayingAudioClips request.
26.DUT responds with GetPlayingAudioClipsResponse message with parameters
* PlayingAudioClips list := playingAudioClipsList

27.1f playingAudioClipsList contains item with Token = audioClipToken, FAIL the test, restore
the DUT and skip other steps.

28.0ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

29.ONVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClipToken - Audio Clip Token
Test Result:
PASS -
» DUT passes all assertions.
FAIL -
» DUT did not send PlayAudioClipResponse message.

» DUT did not send GetPlayingAudioClipsResponse message.

5.11.2.2 PLAY AUDIO CLIP - OGG-Opus

Test Case ID: MEDIA2-11-2-2
Specification Coverage: PlayAudioClip, GetPlayingAudioClips, Audio Clip State
Feature Under Test: PlayAudioClip, GetPlayingAudioClips, tns1:Media/AudioClip/State

WSDL Reference: media2.wsdl, event.wsdl

www.onvif.org 235

ONVIE® | imsgres

Test Purpose: To verify playing of OGG-Opus format Audio Clip. To verify stopping of Audio Clip

playing by ending of Audio Clip. To verify tns1:Media/AudioClip/State event generation on starting
and stopping of playing. To verify getting of Audio Clips playing list.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the
DUT. Pull-Point Notification feature is supported by the DUT. Audio Clip event topic is supported by
the DUT. Audio Clip is supported by the DUT. OGG-Opus audio clip format is supported by the DUT.
Either there is a free space for a new Audio Clip adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token

» out outputLevelRange - Output Level Range
4. Set Audio Clip Configuration audioClipConfig with the following fields values

* Enabled := true

* Name := "MEDIA2-11-2-2 Test Case"

* AudioOutputToken[0] := outputToken

* Type :="audio/ogg;codecs=opus"

* RepeatCycles :=0

* Repeatlinterval skipped

* AudioOutputLevel := outputLevelRange.Min

» ScheduleToken skipped

5. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add

» out audioClipToken - token of added Audio Clip

236 www.onvif.org

OnviF | empnggre

6. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure

mentioned in Annex A.4 with the following input and output parameters
* in "tns1:Media/AudioClip/State" - Notification Topic
» out s - Subscription Reference
» out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time
7. ONVIF Client invokes PlayAudioClip request with parameters
» Token := audioClipToken
* AudioOutputToken skipped
* Play :=true
» RepeatCycles skipped
8. DUT responds with PlayAudioClipResponse message.

9. ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output Token and Audio Clip Token by following the procedure mentioned in Annex A.44
with the following input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipToken - Audio Clip token

* in outputToken - Audio Output Token

» out message1 - Changed event for requested Audio Output Token and Audio Clip

10.1f message1.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

11. If message 1.Message does not contain Data.Simpleltem with Name = "ClipName" and with
Value = "MEDIA2-11-2-2 Test Case", FAIL the test, restore the DUT and skip other steps.

12.ONVIF Client invokes GetPlayingAudioClips request.

13.DUT responds with GetPlayingAudioClipsResponse message with parameters

www.onvif.org 237

OnviF | empnggre

* PlayingAudioClips list := playingAudioClipsList

14.If playingAudioClipsList does not contain item with Token = audioClipToken, FAIL the test,
restore the DUT and skip other steps.

15. Set playingAudioClip := item with Token = audioClipToken from playingAudioClipsList.

16. If playingAudioClip.Name is not equal to "MEDIA2-11-2-2 Test Case", FAIL the test, restore
the DUT and skip other steps.

17.1f playingAudioClip.AudioOutputToken list contains more than one item, FAIL the test, restore
the DUT and skip other steps.

18.If playingAudioClip.AudioOutputToken[0] is not equal to outputToken, FAIL the test, restore
the DUT and skip other steps.

19.1f playingAudioClip.AudioOutputLevel is not equal to outputLevelRange.Min, FAIL the test,
restore the DUT and skip other steps.

20.If playingAudioClip.RepeatsLeft is not equal to 0, FAIL the test, restore the DUT and skip
other steps.

21.Set audioClipPlayingDuration := duration of uploaded Audio Clip playing.
22.Wait for audioClipPlayingDuration.

23.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipToken - Audio Clip token

* in outputToken - Audio Output Token

» out message? - Changed event for requested Audio Output Token and Audio Clip

24.1f message2.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

25.ONVIF Client invokes GetPlayingAudioClips request.

238 www.onvif.org

OnviF | empnggre

26.DUT responds with GetPlayingAudioClipsResponse message with parameters

* PlayingAudioClips list := playingAudioClipsList

27.1f playingAudioClipsList contains item with Token = audioClipToken, FAIL the test, restore
the DUT and skip other steps.

28.0ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

29.0NVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClipToken - Audio Clip Token
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send PlayAudioClipResponse message.

* DUT did not send GetPlayingAudioClipsResponse message.

5.11.2.3 PLAY AUDIO CLIP - STOP PLAYING

Test Case ID: MEDIA2-11-2-3

Specification Coverage: PlayAudioClip, GetPlayingAudioClips, Audio Clip State
Feature Under Test: PlayAudioClip, GetPlayingAudioClips, tns1:Media/AudioClip/State
WSDL Reference: media2.wsdl, event.wsdl

Test Purpose: To verify stopping of Audio Clip playing by PlayAudioClip command. To verify
tns1:Media/AudioClip/State event generation on starting and stopping of playing. To verify getting
of Audio Clips playing list.

Pre-Requisite: Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Event Service was received from the DUT. Pull-Point Notification feature is supported by the

www.onvif.org 239

O n VI F ® | Standardizing IP Connectivity
for Physical Security

DUT. Audio Clip event topic is supported by the DUT. Audio Clip is supported by the DUT. WAV with
LPCM audio clip format is supported by the DUT. Either there is a free space for a new Audio Clip
adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token

* out outputLevelRange - Output Level Range
4. Set Audio Clip Configuration audioClipConfig with the following fields values

* Enabled := true

* Name := "MEDIA2-11-2-3 Test Case"

* AudioOutputToken[0] := outputToken

* Type :="audio/vnd.wave;codec=1"

* RepeatCycles := -1

* Repeatinterval : =0

* AudioOutputLevel := outputLevelRange.Min

» ScheduleToken skipped

5. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add
» out audioClipToken - token of added Audio Clip

6. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/AudioClip/State" - Notification Topic

240 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* out s - Subscription Reference
 out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time
7. ONVIF Client invokes PlayAudioClip request with parameters
» Token := audioClipToken
* AudioOutputToken skipped
* Play :=true
* RepeatCycles skipped
8. DUT responds with PlayAudioClipResponse message.

9. ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

* out message1 - Changed event for requested Audio Output Token and Audio Clip

10.If message1.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

11. ONVIF Client invokes PlayAudioClip request with parameters
» Token := audioClipToken
* AudioOutputToken skipped
* Play := false
* RepeatCycles skipped

12.DUT responds with PlayAudioClipResponse message.

www.onvif.org 241

OnviF | empnggre

13.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

* out message? - Changed event for requested Audio Output Token and Audio Clip

14.1f message2.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

15. ONVIF Client invokes GetPlayingAudioClips request.
16.DUT responds with GetPlayingAudioClipsResponse message with parameters
* PlayingAudioClips list := playingAudioClipsList

17.1f playingAudioClipsList contains item with Token = audioClipToken, FAIL the test, restore
the DUT and skip other steps.

18. ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

19.ONVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClipToken - Audio Clip Token
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send PlayAudioClipResponse message.

» DUT did not send GetPlayingAudioClipsResponse message.

242 www.onvif.org

OnviF | empnggre

5.11.2.4 PLAY AUDIO CLIP - NEW PARAMETERS IN PLAY
REQUEST

Test Case ID: MEDIA2-11-2-4

Specification Coverage: PlayAudioClip, GetPlayingAudioClips, Audio Clip State
Feature Under Test: PlayAudioClip, GetPlayingAudioClips, tns1:Media/AudioClip/State
WSDL Reference: media2.wsdl, event.wsdl

Test Purpose: To verify playing of Audio Clip with parameters in Play command different from
parameters that were set in Audio Clip Configuration. To verify tns1:Media/AudioClip/State event
generation on starting and stopping of playing. To verify getting of Audio Clips playing list.

Pre-Requisite: Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Event Service was received from the DUT. Pull-Point Notification feature is supported by the
DUT. Audio Clip event topic is supported by the DUT. Audio Clip is supported by the DUT. WAV with
LPCM audio clip format is supported by the DUT. Either there is a free space for a new Audio Clip
adding or it is possible to delete any Audio Clip.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token
» out outputLevelRange - Output Level Range

4. Set Audio Clip Configuration audioClipConfig with the following fields values
» Enabled := true

* Name := "MEDIA2-11-2-4 Test Case"

AudioOutputToken[0] := outputToken
* Type :="audio/vnd.wave;codec=1"

* RepeatCycles :=0

www.onvif.org 243

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* Repeatinterval : = 1
* AudioOutputLevel := outputLevelRange.Min
» ScheduleToken skipped

5. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add
» out audioClipToken - token of added Audio Clip

6. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/AudioClip/State" - Notification Topic
* out s - Subscription Reference
 out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time
7. ONVIF Client invokes PlayAudioClip request with parameters
* Token := audioClipToken
* AudioOutputToken skipped
* Play :=true
* RepeatCycles := 1
8. DUT responds with PlayAudioClipResponse message.

9. ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference
* in currentTime - current time for the DUT
* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

244 www.onvif.org

OnviF | empnggre

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

» out message1 - Changed event for requested Audio Output Token and Audio Clip

10.1f message1.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

11. Set audioClipPlayingDuration := duration of uploaded Audio Clip playing.
12.Wait for audioClipPlayingDuration.

13.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

» out message?2 - Changed event for requested Audio Output Token and Audio Clip

14.If message2.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

15.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

» out message3 - Changed event for requested Audio Output Token and Audio Clip

16.If message3.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

www.onvif.org 245

ONVIE® | imsgres

17.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

» out message4 - Changed event for requested Audio Output Token and Audio Clip

18.If message4.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

19. ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

20.0ONVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClip Token - Audio Clip Token
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send PlayAudioClipResponse message.

» DUT did not send GetPlayingAudioClipsResponse message.

5.11.2.5 PLAY SCHEDULED AUDIO CLIP

Test Case ID: MEDIA2-11-2-5
Specification Coverage: GetPlayingAudioClips, Audio Clip State

Feature Under Test: GetPlayingAudioClips, tns1:Media/AudioClip/State

246 www.onvif.org

OnviF | empnggre

WSDL Reference: media2.wsdl, schedule.wsdl, event.wsdl

Test Purpose: To verify playing of Audio Clip that has Schedule Token parameter in settings. To
verify stopping of Audio Clip playing by ending of Audio Clip. To verify tns1:Media/AudioClip/State
event generation on starting and stopping of playing. To verify getting of Audio Clips playing list.

Pre-Requisite: Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Event Service was received from the DUT. Schedule Service is received from the DUT. Pull-
Point Notification feature is supported by the DUT. Audio Clip event topic is supported by the DUT.
Audio Clip is supported by the DUT. WAV with LPCM audio clip format is supported by the DUT.
Either there is a free space for a new Audio Clip adding or it is possible to delete any Audio Clip.
The DUT shall have enough free storage capacity for one additional Schedule.

Test Configuration: ONVIF Client and DUT.
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token
» out outputLevelRange - Output Level Range

4. ONVIF Client creates Schedule with appropriate iCalendar value by following the procedure
mentioned in Annex A.45 with the following input and output parameters

» out scheduleToken - Schedule token
5. Set Audio Clip Configuration audioClipConfig with the following fields values
* Enabled := true
+ Name := "MEDIA2-11-2-5 Test Case"
* AudioOutputToken[0] := outputToken

* Type :="audio/vnd.wave;codec=1"

L]

RepeatCycles := 0
* Repeatinterval skipped

* AudioOutputLevel := outputLevelRange.Min

www.onvif.org 247

OnviF | empnggre

* ScheduleToken := schedule Token

6. ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add
» out audioClipToken - token of added Audio Clip

7. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

* in "tns1:Media/AudioClip/State" - Notification Topic
* out s - Subscription Reference

» out currentTime - current time for the DUT

» out terminationTime - Subscription Termination time

8. ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

» out message1 - Changed event for requested Audio Output Token and Audio Clip

9. If message1.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "true", FAIL the test, restore the DUT and skip other steps.

10.ONVIF Client invokes GetPlayingAudioClips request.
11. DUT responds with GetPlayingAudioClipsResponse message with parameters
* PlayingAudioClips list := playingAudioClipsList

12.If playingAudioClipsList does not contain item with Token = audioClipToken, FAIL the test,
restore the DUT and skip other steps.

248 www.onvif.org

OnviF | empnggre

13. Set audioClipPlayingDuration := duration of uploaded Audio Clip playing.

14.Wait for audioClipPlayingDuration.

15.ONVIF Client retrieves Changed tns1:Media/AudioClip/State event for the specified Audio
Output and Audio Clip by following the procedure mentioned in Annex A.44 with the following
input and output parameters

* in s - Subscription reference

* in currentTime - current time for the DUT

* in terminationTime - subscription termination time

* in audioClipConfig.Name - Audio Clip Name

* in audioClipConfig.AudioOutputToken[0] - Audio Output Token

* out message? - Changed event for requested Audio Output Token and Audio Clip

16.If message2.Message does not contain Data.Simpleltem with Name = "Playing" and with
Value = "false", FAIL the test, restore the DUT and skip other steps.

17.1f message2.Message.UtcTime - message 1.Message.UtcTime > audioClipPlayingDuration,
FAIL the test, restore the DUT and skip other steps.

18. ONVIF Client invokes GetPlayingAudioClips request.
19.DUT responds with GetPlayingAudioClipsResponse message with parameters
* PlayingAudioClips list := playingAudioClipsList

20.1f playingAudioClipsList contains item with Token = audioClipToken, FAIL the test, restore
the DUT and skip other steps.

21.ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

22.0ONVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClipToken - Audio Clip Token
23.ONVIF Client restore DUT settings changed in the step 5.

Test Result:

www.onvif.org 249

ONVIE® | imsgres

PASS -
* DUT passes all assertions.
FAIL -

* DUT did not send GetPlayingAudioClipsResponse message.

5.12 Events

5.12.1 REALTIME PULLPOINT SUBSCRIPTION — AUDIO
CLIP STATE EVENT

Test Case ID: MEDIA2-12-1-1
Specification Coverage: Audio Clip State

Feature under test: GetEventProperties, CreatePullPointSubscription, PullMessages, tns1:Media/
AudioClip/State

WSDL Reference: media2.wsdl, event.wsdl

Test Purpose: To verify tns1:Media/AudioClip/State topic format. To verify tns1:Media/AudioClip/
State event format. To verify Initialized event generation for an Audio Clip item.

Pre-Requisite: Media2 Service is received from the DUT. Event Service was received from the
DUT. Pull-Point Notification feature is supported by the DUT. Audio Clip event topic is supported
by the DUT. Audio Clip is supported by the DUT. WAV with LPCM audio clip format is supported
by the DUT. Either there is a free space for a new Audio Clip adding or it is possible to delete any
Audio Clip.

Test Configuration: ONVIF Client and DUT
Test Procedure:
1. Start an ONVIF Client.
2. Start the DUT.
3. ONVIF Client invokes GetEventProperties request.
4. The DUT responds with a GetEventPropertiesResponse message with parameters
» TopicNamespacelocation list

* FixedTopicSet

250 www.onvif.org

OnviF | empnggre

TopicSet =: topicSet
» TopicExpressionDialect list
* MessageContentFilterDialect list
* MessageContentSchemalocation list
5. If topicSet does not contain the following topic, FAIL the test and skip other steps:
* tns1:Media/AudioClip/State

6. If topic.MessageDescription.IsProperty is not equal to true, FAIL the test and skip other
steps.

7. If topic does not contain MessageDescription.Source.SimpleltemDescription item with
Name = "AudioOutputToken", FAIL the test and skip other steps.

8. If topic.MessageDescription.Source.SimpleltemDescription with Name =
"AudioOutputToken" does not have Type = "tt:ReferenceToken", FAIL the test and skip other
steps.

9. If topic does not contain MessageDescription.Data.SimpleltemDescription item with Name
= "Token", FAIL the test and skip other steps.

10.If topic.MessageDescription.Data.SimpleltemDescription with Name = "Token" does not
have Type = "tt:ReferenceToken", FAIL the test and skip other steps.

11. If topic does not contain MessageDescription.Data.SimpleltemDescription item with Name
= "ClipName", FAIL the test and skip other steps.

12.If topic.MessageDescription.Data.SimpleltemDescription with Name = "ClipName" does not
have Type = "xs:string", FAIL the test and skip other steps.

13.If topic does not contain MessageDescription.Data.SimpleltemDescription item with Name
= "Playing", FAIL the test and skip other steps.

14.If topic.MessageDescription.Data.SimpleltemDescription with Name = "Playing" does not
have Type = "xs:boolean", FAIL the test and skip other steps.

15.ONVIF Client retrieves audio output token and audio output level range by following the
procedure mentioned in Annex A.41 with the following input and output parameters

» out outputToken - Output Token

» out outputLevelRange - Output Level Range

www.onvif.org 251

O n VI F ® | Standardizing IP Connectivity
for Physical Security

16. Set Audio Clip Configuration audioClipConfig with the following fields values

» Enabled := true

* Name := "MEDIA2-12-1-1 Test Case"

* AudioOutputToken[0] := outputToken

* Type :="audio/vnd.wave;codec=1"

* RepeatCycles :=0

* Repeatinterval skipped

* AudioOutputLevel := outputLevelRange.Min
» ScheduleToken skipped

17.ONVIF Client adds an Audio Clip by following the procedure mentioned in Annex A.43 with
the following input and output parameters

* in audioClipConfig - Audio Clip Configuration to add
» out audioClipToken - token of added Audio Clip

18. ONVIF Client creates PullPoint subscription for the specified topic by following the procedure
mentioned in Annex A.4 with the following input and output parameters

in "tns1:Media/AudioClip/State" - Notification Topic
* out s - Subscription Reference
 out currentTime - current time for the DUT
» out terminationTime - Subscription Termination time
19. Until timeout1 timeout expires, repeat the following steps:
19.1. ONVIF Client waits for time t := min{(tt-ct)/2, 1 second}.
19.2. ONVIF Client invokes PullMessages to the subscription endpoint s with parameters
» Timeout := PT60S
* MessageLimit := 1
19.3. The DUT responds with PullMessagesResponse message with parameters

* CurrentTime =: ¢t

252 www.onvif.org

ONVIE® | imsgres

* TerminationTime =: {t
» NotificationMessage list =: notificationMessageList
19.4. For each notification message (notification) in notificationMessageList

19.4.1. If notification.Topic value is not equal to tns1:Media/AudioClip/State, FAIL the
test and skip other steps.

19.4.2. If notification.Message.Message has PropertyOperation attribute with value
is equal to "Initialized" and Data.Simpleltem.Token = audioClipToken ONVIF
Client checks notification

19.4.2.1. If notification.Message.Message does not have Source.Simpleltem
with Name = "AudioOutputToken" and with Value = outputToken,
FAIL the test and skip other steps.

19.4.2.2. If notification.Message.Message does not have Data.Simpleltem
with Name = "ClipName" and with Value = "MEDIA2-12-1-1 Test
Case", FAIL the test and skip other steps.

19.4.2.3. If notification.Message.Message does not have Data.Simpleltem
with Name = "Playing" and with Value = "false", FAIL the test and
skip other steps.

19.5. If timeout1 expires for step 19 without NotificationMessage with PropertyOperation =
"Initialized" and with Data.Simpleltem.Token = audioClipToken, FAIL the test and skip
other steps.

20.ONVIF Client deletes PullPoint subscription by following the procedure mentioned in Annex
A.6 with the following input and output parameters

* in s - Subscription reference

21.0ONVIF Client deletes created Audio Clip to restore the DUT by following the procedure
mentioned in Annex A.40 with the following input and output parameters

* in audioClipToken - Audio Clip Token
Test Result:
PASS -
* DUT passes all assertions.

FAIL -

www.onvif.org 253

OnviF | empnggre

* The DUT did not send a GetEventPropertiesResponse

+ The DUT did not send a PullMessagesResponse.

Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.

5.13 EQ Presets

5.13.1 SET EQ PRESETS

Test Case ID: MEDIA2-13-1-1

Specification Coverage: SetEQPreset.

Feature Under Test: SetEQPreset, GetAudioOutputConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify changing of default EQPreset via SetEQPreset operation.

Pre-Requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability. EQ Presets
is supported by Device.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client chooses Audio Output Configuration that supports EQ Presets by following
the procedure mentioned in Annex A.49 with the following input and output parameters

» out aocToken - Token of Audio Output Configuration that supports EQ Presets

» out aocOptionsltem - AudioOutputConfigurationOptions item with EQ Presets parameters
that corresponds to selected Audio Output Configuration

4. Set eqPreset := item from aocOptionsltem.EQPresets list with isDefault=false if any,
otherwise first item from EQPresets list.

5. ONVIF Client invokes SetEQPreset request with parameters

» Configuration.Token := eqPreset. Token

254 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Configuration.Name := eqPreset.Name

Configuration.isDefault := true
» Configuration.ScheduleToken skipped
» Configuration.isFrequencyDecibelEditable := eqPreset.isFrequencyDecibelEditable
» Configuration.FrequencyDecibelPair list := eqPreset.FrequencyDecibelPair list
6. The DUT responds with SetEQPresetResponse.
7. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken := aocToken
» ProfileToken skipped

8. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

9. If options does not contain EQPreset with Token = eqPreset. Token, FAIL the test, restore
DUT settings and skip other steps.

10. Set eqPresetFromOptions := EQPreset item from options that has Token = eqPreset.Token

11. If eqPresetFromOptions.isDefault is not equal to "true", FAIL the test, restore DUT settings
and skip other steps.

12.If EQPreset list from options contains more than one item with isDefault="true", FAIL the
test, restore DUT settings and skip other steps.

13.ONVIF Client restore DUT settings changed in step 3.
Test Result:
PASS —

* DUT passes all assertions.
FAIL -

* DUT did not send SetEQPresetResponse message.

» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

www.onvif.org 255

OnviF | empnggre
5.13.2 SET EQ PRESETS - SCHEDULE

Test Case ID: MEDIA2-13-1-2

Specification Coverage: SetEQPreset.

Feature Under Test: SetEQPreset, GetAudioOutputConfigurationOptions
WSDL Reference: media2.wsdl

Test Purpose: To verify scheduling of EQPreset via SetEQPreset operation.

Pre-Requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability. EQ Presets
is supported by Device. EQ Preset Schedule is supported.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client chooses Audio Output Configuration that supports EQ Presets with scheduling
by following the procedure mentioned in Annex A.50 with the following input and output
parameters

» out aocToken - Token of Audio Output Configuration that supports EQ Presets

» out aocOptionsltem - AudioOutputConfigurationOptions item with EQ Presets parameters
that corresponds to selected Audio Output Configuration

4. ONVIF Client creates Schedule with appropriate iCalendar value by following the procedure
mentioned in Annex A.45 with the following input and output parameters

+ out scheduleToken - Schedule token

5. Set eqPreset := aocOptionsltem.EQPresets[0].

6. ONVIF Client invokes SetEQPreset request with parameters
» Configuration.Token := eqPreset.Token
» Configuration.Name := eqPreset.Name

» Configuration.isDefault := true

256 www.onvif.org

ONVIE® | imsgres

» Configuration.ScheduleToken := schedule Token

» Configuration.isFrequencyDecibelEditable := eqPreset.isFrequencyDecibelEditable
» Configuration.FrequencyDecibelPair list := eqPreset.FrequencyDecibelPair list
7. The DUT responds with SetEQPresetResponse.
8. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken := aocToken
» ProfileToken skipped

9. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

* Options =: options

10.If options does not contain EQPreset with Token = eqPreset.Token, FAIL the test, restore
DUT settings and skip other steps.

11. Set eqPresetFromOptions := EQPreset item from options that has Token = eqPreset.Token

12.If eqPresetFromQOptions.ScheduleToken is not equal to scheduleToken, FAIL the test,
restore DUT settings and skip other steps.

13.ONVIF Client invokes SetEQPreset request with parameters
» Configuration.Token := eqPreset.Token

» Configuration.Name := eqPreset.Name

Configuration.isDefault := true
» Configuration.ScheduleToken skipped

» Configuration.isFrequencyDecibelEditable := eqPreset.isFrequencyDecibelEditable

L]

Configuration.FrequencyDecibelPair list := eqPreset.FrequencyDecibelPair list

14.The DUT responds with SetEQPresetResponse.

15. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken := aocToken

« ProfileToken skipped

www.onvif.org 257

OnviF | empnggre

16.The DUT responds with GetAudioOutputConfigurationOptionsResponse with

parameters
» Options =: options

17.1f options does not contain EQPreset with Token = eqPreset.Token, FAIL the test, restore
DUT settings and skip other steps.

18.Set eqPresetFromOptions := EQPreset item from options that has Token = eqPreset.Token

19.1f eqPresetFromQOptions contains ScheduleToken element, FAIL the test, restore DUT
settings and skip other steps.

20.ONVIF Client restore DUT settings changed in step 3 and in the step 4.
Test Result:
PASS -

* DUT passes all assertions.
FAIL -

+ DUT did not send SetEQPresetResponse message.

* DUT did not send GetAudioOutputConfigurationOptionsResponse message.

5.13.3 SET EQ PRESETS - FREQUENCY DECIBEL

Test Case ID: MEDIA2-13-1-3

Specification Coverage: SetEQPreset.

Feature Under Test: SetEQPreset, GetAudioOutputConfigurationOptions

WSDL Reference: media2.wsdl

Test Purpose: To verify changing of FrequencyDecibelPair via SetEQPreset operation.

Pre-Requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability. EQ Presets
is supported by Device. Frequency Decibel Management is supported by Device.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

258 www.onvif.org

OnviF | empnggre

2. Start the DUT.

3. ONVIF Client chooses Audio Output Configuration that has EQ Preset with Frequency
Decibel Management supporting by following the procedure mentioned in Annex A.51 with
the following input and output parameters

» out aocToken - Token of Audio Output Configuration that supports EQ Presets and
contains at least one EQ Prset that supports Frequency Decibel update.

» out aocOptionsltem - AudioOutputConfigurationOptions item with EQ Presets parameters
that corresponds to selected Audio Output Configuration.

4. Set eqPreset := the first item from aocOptionslitem.EQPresets list with
isFrequencyDecibelEditable = true.

5. ONVIF Client invokes SetEQPreset request with parameters
» Configuration.Token := eqPreset.Token
» Configuration.Name := eqPreset.Name
» Configuration.isDefault := true
» Configuration.ScheduleToken skipped
» Configuration.isFrequencyDecibelEditable := eqPreset.isFrequencyDecibelEditable
» Configuration.FrequencyDecibelPair[0].CenterFrequency = 125
» Configuration.FrequencyDecibelPair[0].Decibel = -2.0
» Configuration.FrequencyDecibelPair[1].CenterFrequency = 500
» Configuration.FrequencyDecibelPair[1].Decibel = 1.5
» Configuration.FrequencyDecibelPair[2].CenterFrequency = 1000
» Configuration.FrequencyDecibelPair[2].Decibel = 2.0
» Configuration.FrequencyDecibelPair[3].CenterFrequency = 3000
» Configuration.FrequencyDecibelPair[3].Decibel = 3.5
» Configuration.FrequencyDecibelPair[3].CenterFrequency = 6000
» Configuration.FrequencyDecibelPair[3].Decibel = -1.5

6. The DUT responds with SetEQPresetResponse.

www.onvif.org 259

ONVIE® | imsgres

7. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters

» ConfigurationToken := aocToken
* ProfileToken skipped

8. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

9. If options does not contain EQPreset with Token = eqPreset. Token, FAIL the test, restore
DUT settings and skip other steps.

10. Set eqPresetFromOptions := EQPreset item from options that has Token = eqPreset.Token

11. If eqPresetFromOptions.isDefault is not equal to "true", FAIL the test, restore DUT settings
and skip other steps.

12.If eqPresetFromOptions.isFrequencyDecibelEditable is not equal to "true", FAIL the test,
restore DUT settings and skip other steps.

13.If eqPresetFromQOptions does not contain at least one FrequencyDecibelPair item, FAIL the
test, restore DUT settings and skip other steps.

14. ONVIF Client restore DUT settings changed in step 3.
Test Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send SetEQPresetResponse message.

+ DUT did not send GetAudioOutputConfigurationOptionsResponse message.

5.14 WebRTC Configuration
5.14.1 WebRTC Configuration

5.14.1.1 GET AND SET WEBRTC CONFIGURATIONS

Test Case ID: MEDIA2-14-1-1

260 www.onvif.org

OnviF | empnggre

Specification Coverage: GetWebRTCConfigurations (ONVIF Media2 Service Specification),
SetWebRTCConfigurations (ONVIF Media2 Service Specification)

Feature under test: GetWebRTCConfigurations, SetWebRTCConfigurations
WSDL Reference: media2.wsdl

Test Purpose: To verify retrieving of WebRTC Configurations using GetWebRTCConfigurations
request. To verify update WebRTC Configurations using SetWebRTCConfigurations request,
including addition of new configuration, update and deletion of existing configuration.

Pre-Requisite: Security Configuration Service is received from the DUT Media2 Service is received
from the DUT. WebRTC streaming is supported by DUT as indicated by WebRTC capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Security Configuration Service Capabilities by following the
procedure mentioned in Annex A.52 with the following input and output parameters:

* out cap - Security Configuration Service Capabilities

4. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters:

* out media2cap - Media2 Service Capabilities
5. ONVIF Client invokes GetWebRTCConfigurations request.

6. The DUT responds with a GetWebRTCConfigurationsResponse message with
parameters:

» Configurations list =: configurations1
7. Set numberOfWebRTCConfigs := number of items at configurations1 list.

8. If numberOfWebRTCConfigs > media2cap.Media2ServiceCapabilities.WebRTC, FAIL the
test and skip other steps.

9. Configure certification path validation policy:

9.1. Set:

www.onvif.org 261

OnviF | empnggre

» keyAlgorithm := "ECC" if cap.KeystoreCapabilities.ECCKeyPairGeneration = true;
"RSA" otherwise.

9.2. ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.53 with the following input and output parameters:

* in cap - DUT capabilities

* in keyAlgorithm - DUT capabilities

* in "CN=ONVIF TT1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy1 Alias" - certification path validation policy alias
+ out certPathValidationPolicyID - certification path validation policy identifier
 out certlD - certificate identifier

» out keyID - RSA key pair identifier

+ out CAcert - CA certificate

+ out privateKey - CA certificate private key

10.ONVIF Client configures an authorization server on Device by following the procedure
mentioned in Annex A.59 with the following input and output parameters:

* in cap - Security Configuration Service Capabilities
» out authServerToken1 - authorization server token
» out scope1 - authorization scope

» out authServerUri1 - authorization server uri

11. ONVIF Client gets media profile token applicable for streaming by following the procedure
mentioned in Annex A.68 with the following input and output parameters:

» out profileToken1 - media profile token
12.Set numToCreate := 2 if media2cap.Media2ServiceCapabilities. WebRTC >= 2, otherwise 1.

13.ONVIF Client invokes SetWebRTCConfigurations request, providing a list containing
numToCreate configurations. For each configuration from i = 0 to numToCreate - 1:

* WebRTCConfiguration[i].SignalingServer := anyValidUniqueUri

* WebRTCConfiguration][i].CertPathValidationPolicyID := certPathValidationPolicylD

262 www.onvif.org

OnviF | empnggre

WebRTCConfiguration[i].AuthorizationServer := authServerToken1

WebRTCConfiguration[i].DefaultProfile := profile Token1

WebRTCConfiguration[i].Enabled := true

WebRTCConfiguration[i].Connected is skipped

WebRTCConfiguration[i].Error is skipped
14.The DUT responds with a SetWebRTCConfigurationsResponse message.
15. ONVIF Client invokes GetWebRTCConfigurations request.

16.The DUT responds with a GetWebRTCConfigurationsResponse message with
parameters:

» Configurations list =: configurations2
17.1f configurations2 is empty, FAIL the test, restore the DUT state, and skip other steps.

18.If configurations2 contains a number of items != numToCreate, FAIL the test, restore the
DUT state, and skip other steps.

19.1f configurations2 does not contain the same parameters as were used at 13, FAIL the test,
restore the DUT state, and skip other steps.

20.If at least one configuration from configurations2 has other values then Connected == false,
FAIL the test, restore the DUT state, and skip other steps.

21.0ONVIF Client updates existing configuration by invoking SetWebRTCConfigurations
request request with parameters:

* WebRTCConfiguration.SignalingServer := anyValidUri

* WebRTCConfiguration.CertPathValidationPolicylD := certPathValidationPolicylD
* WebRTCConfiguration.AuthorizationServer := authServerToken1

» WebRTCConfiguration.DefaultProfile := profile Token1

* WebRTCConfiguration.Enabled := true

* WebRTCConfiguration.Connected is skipped

* WebRTCConfiguration.Error is skipped

22.The DUT responds with a SetWebRTCConfigurationsResponse message.

www.onvif.org 263

ONVIE® | imsgres

23.ONVIF Client invokes GetWebRTCConfigurations request.

24. The DUT responds with a GetWebRTCConfigurationsResponse message with
parameters:

» Configurations list =: configurations3
25.1f configurations3 is empty, FAIL the test, restore the DUT state, and skip other steps.

26.1f configurations3 contains more than one item, FAIL the test, restore the DUT state, and
skip other steps.

27.If configurations3 does not contain the same parameters as were used at 21, FAIL the test,
restore the DUT state, and skip other steps.

28.ONVIF Client invokes empty SetWebRTCConfigurations request.
29.The DUT responds with SetWebRTCConfigurationsResponse message.
30.ONVIF Client invokes GetWebRTCConfigurations request.

31.The DUT responds with a GetWebRTCConfigurationsResponse message with
parameters:

» Configurations list =: configurations4
32.1f configurations4 is NOT empty, FAIL the test, restore the DUT state, and skip other steps.
33.Restore the DUT state.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -
* The DUT did not send a GetWebRTCConfigurationsResponse message(s).
+ The DUT did not send a SetWebRTCConfigurationsResponse message(s).
Note: The following fields are compared at steps 19, 27:
+ SignalingServer

+ CertPathValidationPolicylD

264 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» AuthorizationServer
» DefaultProfile

« Enabled

5.14.1.2 SET WEBRTC CONFIGURATIONS FAULTS

Test Case ID: MEDIA2-14-1-2

Specification Coverage: SetWebRTCConfigurations (ONVIF Media2 Service Specification)
Feature under test: SetWebRTCConfigurations

WSDL Reference: media2.wsdl

Test Purpose: To verify the DUT returns correct faults for invalid SetWebRTCConfigurations
requests.

Pre-Requisite: Security Configuration Service is received from the DUT. Media2 Service is received
from the DUT. WebRTC streaming is supported by DUT as indicated by WebRTC capability.

Test Configuration: ONVIF Client and DUT
Test Procedure:

1. Start an ONVIF Client.

2. Start the DUT.

3. ONVIF Client retrieves Security Configuration Service Capabilities by following the
procedure mentioned in Annex A.52 with the following input and output parameters:

* out cap - Security Configuration Service Capabilities

4. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters:

* out mediaZ2cap - Media2 Service Capabilities
5. Configure certification path validation policy:
51. Set:

» keyAlgorithm := "ECC" if cap.KeystoreCapabilities.ECCKeyPairGeneration = true;
"RSA" otherwise.

www.onvif.org 265

ONVIE® | imsgres

5.2. ONVIF Client creates certification path validation policy by following the procedure

mentioned in Annex A.53 with the following input and output parameters:

* in cap - DUT capabilities

* in keyAlgorithm - DUT capabilities

+ in "CN=ONVIF TT1,C=US" - CA certificate subject

+ in "Test CertPathValidationPolicy1 Alias" - certification path validation policy alias
+ out certPathValidationPolicyID - certification path validation policy identifier

* out certlD - certificate identifier

» out keyID - RSA key pair identifier

+ out CAcert - CA certificate

+ out privateKey - CA certificate private key

6. ONVIF Client configures an authorization server on Device by following the procedure
mentioned in Annex A.59 with the following input and output parameters:

* in cap - Security Configuration Service Capabilities
« out authServerToken1 - authorization server token
* out scope1 - authorization scope

» out authServerUri1 - authorization server uri

7. ONVIF Client gets media profile token applicable for streaming by following the procedure
mentioned in Annex A.68 with the following input and output parameters:

» out profileToken1 - media profile token

8. ONVIF Client invokes SetWebRTCConfigurations request with following parameters:

WebRTCConfiguration[0].SignalingServer ;= signalingServerUri1

WebRTCConfiguration[0].CertPathValidationPolicyID := certPathValidationPolicylD

WebRTCConfiguration[0].AuthorizationServer := invalid token

WebRTCConfiguration[0].DefaultProfile := profile Token1

WebRTCConfiguration[0].Enabled := true

266 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* WebRTCConfiguration[0].Connected is skipped
* WebRTCConfiguration[0].Error is skipped

9. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoAuthorizationServer SOAP 1.2
fault.

10.ONVIF Client invokes SetWebRTCConfigurations request with following parameters:
* WebRTCConfiguration[0].SignalingServer := signalingServerUri1
» WebRTCConfiguration[0].CertPathValidationPolicylD := certPathValidationPolicylD
* WebRTCConfiguration[0].AuthorizationServer := authServerToken1
* WebRTCConfiguration[0].DefaultProfile := invalid token
» WebRTCConfiguration[0].Enabled := true
* WebRTCConfiguration[0].Connected is skipped
* WebRTCConfiguration[0].Error is skipped
11. The DUT returns env:Sender/ter:InvalidArgVal/ter:NoProfile SOAP 1.2 fault.
12.Restore the DUT state.
Test Result:
PASS -
* DUT passes all assertions.
FAIL -

+ The DUT did not send a env:Sender/ter:InvalidArgVal/ter:NoAuthorizationServer SOAP
1.2 fault message at step 9.

* The DUT did not send a env:Sender/ter:InvalidArgVal/ter:NoProfile SOAP 1.2 fault
message at step 11.

www.onvif.org 267

ONVIE® | imsgres

Annex A Helper Procedures and Additional Notes

A.1 Delete Media Profile if Max Reached

Name: HelperDeleteMediaProfileWhenMaxProfiles

Procedure Purpose: Helper procedure to delete Media Profile if maximum number of Media
Profiles is reached.

Pre-requisite: Media2 Service is received from the DUT.
Input: None.

Returns: None.

Procedure:

1. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters

* out cap - Media2 Service Capabilities
2. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
« Type[0] := All
3. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
4. If number of items in profileList = cap.ProfileCapabilities.MaximumNumberOfProfiles:

4.1. If profileList does not contain items with @fixed = false, FAIL the test and skip other
steps.

4.2. ONVIF Client invokes DeleteProfile request with parameters
» Token := @token of item with @fixed = false from profileList
4.3. The DUT responds with DeleteProfileResponse message.
Procedure Result:
PASS —

» DUT passes all assertions.

www.onvif.org 268

O n VI F ® | Standardizing IP Connectivity
for Physical Security

FAIL -
» DUT did not send GetProfilesResponse message.

« DUT did not send DeleteProfileResponse message.

A.2 Get Service Capabilities

Name: HelperGetServiceCapabilities
Procedure Purpose: Helper procedure to retrieve Media2 Service Capabilities.
Pre-requisite: Media2 Service is received from the DUT.
Input: None.
Returns: Media2 Service Capabilities (cap).
Procedure:
1. ONVIF Client invokes GetServiceCapabilities request.
2. The DUT responds with GetServiceCapabilitiesResponse message with parameters
» Capabilities =: cap
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetServiceCapabilitiesResponse message.

A.3 Get Video Source Configurations List

Name: HelperGetVideoSourceConfigurationsList

Procedure Purpose: Helper procedure to retrieve Video Source Configurations List.
Pre-requisite: Media2 Service is received from the DUT.

Input: None.

Returns: Video Source Configurations list (videoSourceConfList).

www.onvif.org 269

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure:
1. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfList
3. If videoSourceConfList is empty, FAIL the test.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send GetVideoSourceConfigurationsResponse message.

A.4 Create Pull Point Subscription

Name: HelperCreatePullPointSubscription
Procedure Purpose: Helper procedure to create PullPoint Subscription with specified Topic.
Pre-requisite: Event Service is received from the DUT.
Input: Notification Topic (fopic).
Returns: Subscription reference (s), current time for the DUT (ct), subscription termination time (tt).
Procedure:

1. ONVIF Client invokes CreatePullPointSubscription request with parameters

* Filter.TopicExpression := fopic

* Filter.TopicExpression.@Dialect := "http://www.onvif.org/ver10/tev/topicExpression/
ConcreteSet"

2. The DUT responds with CreatePullPointSubscriptionResponse message with
parameters

270 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

» SubscriptionReference =: s
* CurrentTime =: ct
* TerminationTime =: ft
Procedure Result:
PASS —
* DUT passes all assertions.
FAIL —

» DUT did not send CreatePullPointSubscriptionResponse message.

A.5 Retrieve Profile Changed Event by PullPoint

Name: HelperPullProfileChanged

Procedure Purpose: Helper procedure to retrieve and check tns1:Media/ProfileChanged event
with PullMessages.

Pre-requisite: Event Service is received from the DUT.

Input: Subscription reference (s), current time for the DUT (ct), Subscription termination time (ft)
and Media Profile token (profile Token).

Returns: None
Procedure:
1. Until timeout1 timeout expires, repeat the following steps:
1.1. ONVIF Client waits for time t := min{(tt-ct)/2, 1 second}.
1.2. ONVIF Client invokes PullMessages to the subscription endpoint s with parameters
» Timeout := PT60S
* MessageLimit :=1
1.3. The DUT responds with PullMessagesResponse message with parameters
+ CurrentTime =: ct

e TerminationTime =: {t

www.onvif.org 271

O n VI F ® Standardizing IP Connectivity
for Physical Security

* NotificationMessage list =: notificationMessageList

1.4. If notificationMessageList is not empty and the Token source simple item in
notificationMessageList is equal to profileToken, skip other steps and finish the
procedure.

1.5. If timeout1 timeout expires for step 1 without Notification with Token source simple

item equal to profile Token, FAIL the test and skip other steps.
Procedure Result:
PASS —
* DUT passes all assertions.
FAIL —
+ DUT did not send PullMessagesResponse message.

Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.

A.6 Delete Subscription

Name: HelperDeleteSubscription
Procedure Purpose: Helper procedure to delete supscribtion.
Pre-requisite: Event Service is received from the DUT.
Input: Subscription reference (s)
Returns: None
Procedure:
1. ONVIF Client sends an Unsubscribe to the subscription endpoint s.
2. The DUT responds with UnsubscribeResponse message.
Procedure Result:
PASS -
* DUT passes all assertions.

FAIL -

272 www.onvif.org

ONVIE® | imsgres

+ DUT did not send UnsubscribeResponse message.

A.7 Name Parameters

There are the following limitations on maximum length of the Name parameters that shall be used
during tests by ONVIF Device Test Tool to prevent faults from DUT:

+ Name shall be less than or equal to 64 characters (only readable characters accepted).
» UTF-8 character set shall be used for Name.

Note: these limitations will not be used, if ONVIF Device Test Tool reuses values that were received
from the DUT.

A.8 Create Empty Profile

Name: HelperCreateEmptyProfile

Procedure Purpose: Helper procedure to find, create or configure empty Media Profile (without
Configurations).

Pre-requisite: Media2 Service is received from the DUT.
Input: None.

Returns: Empty Media Profile token (profile Token). Flag that indicates that new Media Profile was
created (newProfileFlag).

Procedure:

1. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters

» out cap - Media2 Service Capabilities
2. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
+ Type[0] := All
3. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

4. If number of items in profileList >= cap.ProfileCapabilities.MaximumNumberOfProfiles:

www.onvif.org 273

O n VI F ® | Standardizing IP Connectivity
for Physical Security

4.1. |If profileList does not contain items with @fixed = false, go to step 9.

4.2. ONVIF Client invokes DeleteProfile request with parameters
» Token := @token of item with @fixed = false from profileList
4.3. The DUT responds with DeleteProfileResponse message.
5. ONVIF Client invokes CreateProfile request with parameters
* Name := "testMedia2"
» Configuration list - skipped
6. DUT responds with CreateProfileResponse message with parameters
» Token =: profileToken
7. Set newProfileFlag := true
8. Skip other steps of procedure.
9. ONVIF Client invokes RemoveConfiguration request with parameters
» ProfileToken := profileList{0].@token
* Configuration[0].Type := All
» Configuration[0].Token skipped
10.The DUT responds with RemoveConfigurationResponse message.
11. Set profile Token := profileList[0]. @token
12.Set newProfileFlag := false
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
« DUT did not send DeleteProfileResponse message.

» DUT did not send CreateProfileResponse message.

274 www.onvif.org

ONVIE® | imsgres

+ DUT did not send RemoveConfigurationResponse message.

Note: See Annex A.7 for Name and Token Parameters Length limitations.

A.9 Get Audio Source Configurations List

Name: HelperGetAudioSourceConfigurationsList
Procedure Purpose: Helper procedure to retrieve Audio Source Configurations List.

Pre-requisite: Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Input: None.
Returns: Audio Source Configurations List (audioSourceConfList).
Procedure:
1. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfList
3. If audioSourceConfList is empty, FAIL the test.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send GetAudioSourceConfigurationsResponse message.

A.10 Get Audio Output Configurations List

Name: HelperGetAudioOutputConfigurationsList

Procedure Purpose: Helper procedure to retrieve Audio Output Configurations List.

www.onvif.org 275

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device as

indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.
Input: None.
Returns: Audio Output Configurations List (audioOutputConfList).
Procedure:
1. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken skipped
2. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
» Configurations list =: audioOutputConfList
3. If audioOutputConfList is empty, FAIL the test.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioOutputConfigurationsResponse message.

A.11 Delete Media Profile

Name: HelperDeleteMediaProfile
Procedure Purpose: Helper procedure to delete Media Profile.
Pre-requisite: Media2 Service is received from the DUT.
Input: Media profile token (profile Token).
Returns: None.
Procedure:
1. ONVIF Client invokes DeleteProfile request with parameters

» Token = profileToken

276 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

2. The DUT responds with DeleteProfileResponse message.

Procedure Result:
PASS -

» DUT passes all assertions.
FAIL -

» DUT did not send DeleteProfileResponse message.

A.12 Configure Media profile with Video Source Configuration

Name: HelperConfigureMediaProfileWithVideoSource

Procedure Purpose: Helper procedure to configure Media Profile to contain Video Source
Configuration.

Pre-requisite: Media2 Service is received from the DUT.
Input: None.
Returns: Media Profile (profile) containing Video Source Configuration.
Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
» Type[0] := VideoSource
2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList
3. If profileList is empty, FAIL the test and skip other steps.
4. If profileList contains Media Profile with Configurations.VideoSource:
4.1. Set profile := the first profile with Configurations.VideoSource from the profileList.
4.2. Skip other steps.
5. Set profile := profileList[0].

6. ONVIF Client invokes GetVideoSourceConfigurations request with parameters

www.onvif.org 277

O n VI F ® Standardizing IP Connectivity
for Physical Security

» ConfigurationToken skipped
* ProfileToken = profile.@token

7. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfigurationList

8. If videoSourceConfigurationList is empty, FAIL the test and skip other steps.

9. ONVIF Client invokes AddConfiguration request with parameters

ProfileToken := profile.@token

* Name skipped

L]

Configuration[0]. Type := VideoSource

Configuration[0]. Token := videoSource ConfigurationList[0]
10.The DUT responds with AddConfigurationResponse message.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.
» DUT did not send GetVideoSourceConfigurationsResponse message.

+ DUT did not send AddConfigurationResponse message.

A.13 View Modes List

Source view modes supported by device defined in tt:ViewModes
+ tt:Fisheye
+ tt:360Panorama
« tt:180Panorama

 tt:Quad

278 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ tt:Original
« tt:LeftHalf
« tt:RightHalf

+ tt:Dewarp

A.14 Retrieve Configuration Changed Event by PullPoint

Name: HelperPullConfigurationChanged

Procedure Purpose: Helper procedure to retrieve and check tns1:Media/ConfigurationChanged
event with PullMessages.

Pre-requisite: Event Service is received from the DUT.

Input: Subscription reference (s), current time for the DUT (ct), Subscription termination time (tt),
configuration token (confToken) and configuration type (confType).

Returns: None
Procedure:
1. Until timeout1 timeout expires, repeat the following steps:
1.1. ONVIF Client waits for time t := min{(tt-ct)/2, 1 second}.
1.2. ONVIF Client invokes PullMessages to the subscription endpoint s with parameters
» Timeout := PT60S
* MessageLimit := 1
1.3. The DUT responds with PullMessagesResponse message with parameters
» CurrentTime =: ct
» TerminationTime =: tt
» NotificationMessage list =: notificationMessageList

1.4. If notificationMessageList is not empty and source simple item Token = confToken
and Type = confType, skip other steps and finish the procedure.

1.5. If timeout1 timeout expires for step 1 without Notification with source simple item
Token = confToken and Type = confType, FAIL the test and skip other steps.

www.onvif.org 279

O n VI F ® Standardizing IP Connectivity
for Physical Security

Procedure Result:
PASS -
» DUT passes all assertions.
FAIL -
* DUT did not send PullMessagesResponse message.

Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.

A.15 Waiting for Reboot

Name: HelperWaitingReboot
Procedure Purpose: Helper procedure to wait until the Device becomes available after reboot.
Pre-requisite: None.
Input: None.
Returns: None.
Procedure:

1. If DUT supports Discovery:

1.1. Until timeout1 timeout expires, repeat the following steps:

1.1.1. The DUT will send Multicast Hello message after it is successfully rebooted
with parameters:

EndpointReference.Address equal to unique endpoint reference of the DUT

Types list

» Scopes list

XAddrs list := xAddrsList

MetadataVersion

1.1.2. If xAddrsList contains URI address with IPv4 address other than LinkLocal
from ONVIF Client subnet, go to step 3.

1.2. If timeout1 timeout expires for the step 1.1 without Hello with URI address with not a
LinkLocal IPv4 address from ONVIF Client subnet, FAIL the test and skip other steps.

280 www.onvif.org

OnviF | empnggre

1.3. ONVIF client waits for 5 seconds after Hello was received.

2. If DUT does not support Discovery:
2.1. ONVIF Client waits during rebootTimeout.
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send Hello message.

Note: timeout1 will be taken from Reboot Timeout field of ONVIF Device Test Tool.

A.16 VideoEncoderConfigurationOptions and
VideoEncoderConfiguration mapping

Table AA1. VideoEncoderConfigurationOptions and
VideoEncoderConfiguration mapping

VideoEncoderConfigurationOptions field VideoEncoderConfiguration field

Encoding Encoding

QualityRange.Min-QualityRange.Max Quality

Resolutions Available contains list of Height and | Height and Width
Width pairs

GovLengthRange.Min-GovLengthRange.Max GovlLength

FrameRatesSupported contains list of available | RateControl.FrameRateLimit
values

BitrateRange.Min-BitrateRange.Max RateControl.BitrateLimit

ProfilesSupported the list of string values listed in | Profile
tt:VideoEncodingProfiles

A.17 Get Video Encoder Configurations List

Name: HelperGetVideoEncoderConfigurationsList

Procedure Purpose: Helper procedure to retrieve Video Encoder Configurations List.

www.onvif.org 281

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-requisite: Media2 Service is received from the DUT.
Input: None.
Returns: Video Encoder Configurations List (videoEncoderConfList).
Procedure:
1. ONVIF Client invokes GetVideoEncoderConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped

2. The DUT responds with all video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: videoEncoderConfList
3. If videoEncoderConfList is empty, FAIL the test.
Procedure Resulit:
PASS -
» DUT passes all assertions.
FAIL -

+ DUT did not send GetVideoEncoderConfigurationsResponse message.

A.18 Get Video Sources List

Name: HelperGetVideoSourcesList
Procedure Purpose: Helper procedure to retrieve Video Sources List.

Pre-requisite: Media2 Service is received from the DUT. DevicelO Service is received from the
DUT.

Input: None.
Returns: Video Sources List (videoSourcesList).
Procedure:

1. ONVIF Client invokes GetVideoSources request.

2. The DUT responds with GetVideoSourcesResponse with parameters

282 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Token list =: videoSourcesList
3. If videoSourcesList is empty, FAIL the test.
Procedure Result:
PASS -
» DUT passes all assertions.
FAIL -

* DUT did not send GetVideoSourcesResponse message.

A.19 Configure Media profile with Audio Source Configuration

Name: HelperConfigureMediaProfileWithAudioSource

Procedure Purpose: Helper procedure to configure Media Profile to contain Audio Source
Configuration.

Pre-requisite: Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

Input: None.
Returns: Media Profile (profile) containing Audio Source Configuration.
Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
» Type[0] := AudioSource
2. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList
3. If profileList is empty, FAIL the test and skip other steps.
4. If profileList contains Media Profile with Configurations.AudioSource:
4.1. Set profile := the first profile with Configurations.AudioSource from the profileList.

4.2. SKkip other steps.

www.onvif.org 283

ONVIE® | imsgres

5. Set profile := profileList[0].
6. ONVIF Client invokes GetAudioSourceConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken = profile. @token
7. The DUT responds with GetAudioSourceConfigurationsResponse with parameters
» Configurations list =: audioSourceConfigurationList
8. If audioSourceConfigurationList is empty, FAIL the test and skip other steps.
9. ONVIF Client invokes AddConfiguration request with parameters
* ProfileToken := profile.@token
* Name skipped
» Configuration[0].Type := AudioSource
» Configuration[0].Token := audioSourceConfigurationList[0]
10.The DUT responds with AddConfigurationResponse message.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.
» DUT did not send GetAudioSourceConfigurationsResponse message.

* DUT did not send AddConfigurationResponse message.

A.20 Get Audio Encoder Configurations List

Name: HelperGetAudioEncoderConfigurationsList
Procedure Purpose: Helper procedure to retrieve Audio Encoder Configurations List.

Pre-requisite: Media2 Service is received from the DUT. Audio configuration is supported by the
DUT as indicated by receiving the GetAudioEncoderConfigurationOptionsResponse.

284 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Input: None.
Returns: Audio Encoder Configurations List (audioEncoderConfList).
Procedure:
1. ONVIF Client invokes GetAudioEncoderConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetAudioEncoderConfigurationsResponse with parameters
» Configurations list =: audioEncoderConfList
3. If audioEncoderConfList is empty, FAIL the test.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send GetAudioEncoderConfigurationsResponse message.

A.21 Configure Media profile with Audio Output Configuration

Name: HelperConfigureMediaProfileWithAudioOutput

Procedure Purpose: Helper procedure to configure Media Profile to contain Audio Output
Configuration.

Pre-requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability.

Input: None.
Returns: Media Profile (profile) containing Audio Output Configuration.
Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped

* Type[0] := AudioOutput

www.onvif.org 285

O n VI F ® | Standardizing IP Connectivity
for Physical Security

2. The DUT responds with GetProfilesResponse message with parameters

» Profiles list =: profileList
3. If profileList is empty, FAIL the test and skip other steps.
4. If profileList contains Media Profile with Configurations.AudioOutput:
4.1. Set profile := the first profile with Configurations.AudioOutput from the profileList.
4.2. Skip other steps.
5. Set profile := profileList[0].
6. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken = profile.@token
7. The DUT responds with GetAudioOutputConfigurationsResponse with parameters
» Configurations list =: audioOutputConfigurationList
8. If audioOutputConfigurationList is empty, FAIL the test and skip other steps.
9. ONVIF Client invokes AddConfiguration request with parameters
» ProfileToken := profile.@token
* Name skipped
» Configuration[0].Type := AudioOutput
» Configuration[0].Token := audioOutputConfigurationList[0]
10.The DUT responds with AddConfigurationResponse message.
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetProfilesResponse message.

» DUT did not send GetAudioOutputConfigurationsResponse message.

286 www.onvif.org

OnviF | empnggre

» DUT did not send AddConfigurationResponse message.

A.22 Get Audio Decoder Configurations List

Name: HelperGetAudioDecoderConfigurationsList
Procedure Purpose: Helper procedure to retrieve Audio Decoder Configurations List.

Pre-requisite: Media2 Service is received from the DUT. Audio Decoder is supported by Device as
indicated by the ProfileCapabilities.ConfigurationsSupported = AudioDecoder capability.

Input: None.
Returns: Audio Decoder Configurations List (audioDecoderConfList).
Procedure:
1. ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetAudioDecoderConfigurationsResponse with parameters
» Configurations list =: audioDecoderConfList
3. If audioDecoderConfList is empty, FAIL the test.
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -

« DUT did not send GetAudioDecoderConfigurationsResponse message.

A.23 Configure Media profile with Audio Output Configuration
and Audio Decoder Configuration
Name: HelperConfigureMediaProfileWithAudioBackCh

Procedure Purpose: Helper procedure to configure Media Profile to contain Audio Output
Configuration and Audio Decoder Configuration.

www.onvif.org 287

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Pre-requisite: Media2 Service is received from the DUT. Audio Outputs is supported by Device

as indicated by the ProfileCapabilities.ConfigurationsSupported = AudioOutput capability. Audio
Decoder is supported by Device as indicated by the ProfileCapabilities.ConfigurationsSupported =
AudioDecoder capability.

Input: None.

Returns: Media Profile (profile) containing Audio Output Configuration and Audio Decoder
Configuration.

Procedure:

1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
* Type[0] := AudioOutput
» Type[1] := AudioDecoder

2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

3. If profileList is empty, FAIL the test and skip other steps.

4. If profileList contains Media Profile with Configurations.AudioOutput and
Configurations.AudioDecoder:

4.1. Set profile := the first Media Profile with Configurations.AudioOutput and
Configurations.AudioDecoder from the profileList.

4.2. Skip other steps of procedure.
5. If profileList contains Media Profile with Configurations.AudioOutput:

5.1. Set profile := the first Media Profile with Configurations.AudioOutput from the
profileList.

5.2. Gotostep13

6. Set profile := profileList[0].

7. ONVIF Client invokes GetAudioOutputConfigurations request with parameters
» ConfigurationToken skipped

* ProfileToken := profile.@token

288 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

8. The DUT responds with GetAudioOutputConfigurationsResponse with parameters

» Configurations list =: audioOutputConfigurationList
9. If audioOutputConfigurationList is empty, FAIL the test and skip other steps.
10. ONVIF Client invokes AddConfiguration request with parameters
» ProfileToken := profile.@token
* Name skipped
» Configuration[0].Type := AudioOutput
» Configuration[0].Token := audioOutputConfigurationList[0]
11. The DUT responds with AddConfigurationResponse message.
12.ONVIF Client invokes GetAudioDecoderConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken = profile.@token
13.The DUT responds with GetAudioDecoderConfigurationsResponse with parameters
» Configurations list =: audioDecoderConfigurationList
14.1f audioDecoderConfigurationList is empty, FAIL the test and skip other steps.

15. ONVIF Client invokes AddConfiguration request with parameters

L]

ProfileToken := profileList.Profiles[0]. @token

* Name skipped

Configuration[0]. Type := AudioDecoder

Configuration[0].Token := audioDecoderConfigurationList[0]
16.The DUT responds with AddConfigurationResponse message.
Procedure Result:
PASS -
* DUT passes all assertions.

FAIL —

www.onvif.org 289

ONVIE® | imsgres

DUT did not send GetProfilesResponse message.

+ DUT did not send GetAudioOutputConfigurationsResponse message.

DUT did not send AddConfigurationResponse message.

DUT did not send GetAudioDecoderConfigurationsResponse message.

A.24 Configure Media profile with Video Source Configuration
and Video Encoder Configuration
Name: HelperConfigureMediaProfileWithVideo

Procedure Purpose: Helper procedure to configure Media Profile to contain Video Source
Configuration and Video Encoder Configuration.

Pre-requisite: Media2 Service is received from the DUT.
Input: None.

Returns: Media Profile (profile) containing Video Source Configuration and Video Encoder
Configuration.

Procedure:

1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
» Type[0] := VideoSource
* Type[1] := VideoEncoder

2. The DUT responds with GetProfilesResponse message with parameters
* Profiles list =: profileList

3. If profileList is empty, FAIL the test and skip other steps.

4. If profileList contains Media Profile with Configurations.VideoSource and
Configurations.VideoEncoder:

4.1. Set profile := the first Media Profile with Configurations.VideoSource and
Configurations.VideoEncoder from the profileList.

4.2. Skip other steps of procedure.

290 www.onvif.org

ONVIE® | imsgres

5. If profileList contains Media Profile with Configurations.VideoSource:

5.1. Set profile := the first Media Profile with Configurations.VideoSource from the
profileList.

5.2. Gotostep13
6. Set profile := profileList[0].
7. ONVIF Client invokes GetVideoSourceConfigurations request with parameters
» ConfigurationToken skipped
 ProfileToken := profile.@token
8. The DUT responds with GetVideoSourceConfigurationsResponse with parameters
» Configurations list =: videoSourceConfigurationList
9. If videoSourceConfigurationList is empty, FAIL the test and skip other steps.
10. ONVIF Client invokes AddConfiguration request with parameters
» ProfileToken := profile.@token
* Name skipped
» Configuration[0].Type := VideoSource
» Configuration[0].Token := videoSourceConfigurationList[0]
11. The DUT responds with AddConfigurationResponse message.
12.ONVIF Client invokes GetVideoEncoderConfigurations request with parameters
» ConfigurationToken skipped
* ProfileToken = profile.@token

13.The DUT responds with compatible video encoder configurations in
GetVideoEncoderConfigurationsResponse with parameters

» Configurations list =: videoEncoderConfigurationList
14.1f videoEncoderConfigurationList is empty, FAIL the test and skip other steps.
15.ONVIF Client invokes AddConfiguration request with parameters

» ProfileToken := profileList.Profiles[0]. @token

www.onvif.org 291

ONVIE® | imsgres

* Name skipped
» Configuration[0].Type := VideoEncoder
» Configuration[0].Token := videoEncoderConfigurationList[0]
16.The DUT responds with AddConfigurationResponse message.
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetProfilesResponse message.
+ DUT did not send GetVideoSourceConfigurationsResponse message.
» DUT did not send AddConfigurationResponse message.

» DUT did not send GetVideoEncoderConfigurationsResponse message.

A.25 Device Configuration to Create OSD with Required Type

Name: HelperDeviceConfigurationToCreateOSD

Procedure Purpose: Helper procedure to configure Device to have free space to create OSD with
required type.

Pre-requisite: Media2 Service is received from the DUT. OSD is supported by the DUT.

Input: OSD Configurations List (osdConfList), OSD Options (0osdOptions), OSD Type that will be
created (osdType).

Returns: Updated OSD Configurations List (osdConfList).
Procedure:
1. If osdType = "Image":
1.1. Set osdiImageNumber := number of OSD Configuration items with Type = "Image".
1.2. If osdOptions.MaximumNumberOfOSDs contains "Image" attribute:

1.2.1. If osdimageNumber = osdOptions.MaximumNumberOfOSDs.Image:

292 www.onvif.org

ONVIE® | imsgres

1.2.1.1. If osdConfList does not contain at least one OSD Configuration with

Type = "Image", FAIL the test and skip other steps.

1.2.1.2. Set osdToken := osdConfList.OSDs[0].token, where OSDs[0] is the
first OSD Configuration with Type = "Image".

1.2.1.3. ONVIF Client deletes OSD Configuration with image type by
following the procedure mentioned in Annex A.26 with the following
input parameter

* in osdToken - OSD Configuration token to delete

1.2.1.4. SetosdConfList:= osdConfList- osdConfList. OSDs[0].token, where
OSDs[0] is the OSD Configuration with token = osdToken.

1.2.1.5. Skip other steps.
2. If osdType = "Text":

2.1. ONVIF Client deletes all OSD Configurations with Type="Text" by following the
procedure mentioned in Annex A.27 with the following input and output parameters

* in osdConfList - current OSD Configuration list

» out osdConfList - updated OSD Configuration list
3. Set osdNumber := number of OSD Configuration items in osdConfList.
4. If osdNumber = osdOptions.MaximumNumberOfOSDs.Total:

4.1. If osdConfList does not contain at least one OSD Configuration, FAIL the test and skip
other steps.

4.2. Set osdToken := osdConfList.OSDs[0].token

4.3. ONVIF Client deletes OSD Configuration by following the procedure mentioned in
Annex A.26 with the following input parameter

* in osdToken - OSD Configuration token to delete

4.4. Set osdConflList := osdConfList - osdConfList.OSDs|[0].token, where OSDs[0] is the
OSD Configuration with token = osdToken.

Procedure Result:

PASS —

www.onvif.org 293

O n V I F ® Standardizing IP Connectivity
for Physical Security

* DUT passes all assertions.
FAIL -

* None.

A.26 Delete OSD

Name: HelperDeleteOSD
Procedure Purpose: Helper procedure to delete OSD Configuration.
Pre-requisite: Media2 Service is received from the DUT. OSD is supported by the DUT.
Input: OSD token (osdToken).
Returns: None.
Procedure:

1. ONVIF Client invokes DeleteOSD request with parameters

+ OSDToken := osdToken

2. DUT responds with DeleteOSDResponse message.
Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

» The DUT did not send DeleteOSDResponse message.

A.27 Delete All Text OSDs

Name: HelperDeleteAllTextOSDs
Procedure Purpose: Helper procedure to delete all OSD Configurations with Type="Text".
Pre-requisite: Media2 Service is received from the DUT. OSD is supported by the DUT.

Input: OSD Configuration list (osdConfList).

294 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Returns: Updated OSD Configuration list (updatedOSDConfList).

Procedure:

1. For each OSD Configuration with Type="Text" osdConfig in osdConfList repeat the following
steps:

1.1. ONVIF Client invokes DeleteOSD request with parameters
+ OSDToken := osdConfig.token

1.2. DUT responds with DeleteOSDResponse message.

1.3. Set updatedOSDConfList := osdConfList - osdConfig.
Procedure Result:
PASS -

* DUT passes all assertions.

FAIL -

» The DUT did not send DeleteOSDResponse message.

A.28 OSDConfigurationOptions and OSDConfiguration
mapping

The following rules should be used for CreateOSD message if osdOptions is the OSD Options,
which were received in GetOSDOptionsResponse:

* OSD.@token := token for new OSD
+ OSD.VideoSourceConfigurationToken := Video Source Configurtion token

» OSD.Type := one of the values that are listed in 0sdOptions.Type, for test propose only Text
or Image shall be used.

+ OSD.Position.Type := one of the values that are listed in 0osdOptions.PositionOption
+ If OSD.Position.Type = Custom:
» OSD.Position.Pos.@x := any value from the range [-1,1]

» OSD.Position.Pos.@y := any value from the range [-1,1]

www.onvif.org 295

OnviF | empnggre

otherwise, OSD.Position.Pos skipped
» OSD.Position.Extension skippedd
» If OSD.Type = Text:

» OSD.TextString.Type := one of the values that are listed in 0osdOptions.TextOption.Type,
for test propose only Plain, Date, Time, or DateAndTime shall be used.

+ If OSD.TextString.Type = Date or DateAndTime:

* OSD.TextString.DateFormat := one of the values that are |listed in
0sdOptions.TextOption.DateFormat

otherwise, OSD.TextString.DateFormat skipped
* If OSD.TextString.Type = Time or DateAndTime:

* OSD.TextString.TimeFormat := one of the values that are listed in
0sdOptions.TextOption.TimeFormat

otherwise, OSD.TextString. TimeFormat skipped
+ If osdOptions.TextOption.FontSizeRange is specified:

* OSD.TextString.FontSize = any value from the range
[osdOptions.TextOption.FontSizeRange.Min,osdOptions.TextOption.FontSizeRange.Max]

otherwise, OSD.TextString.FontSize skipped

* If osdOptions.TextOption.FontColor and o0sdOptions.TextOption.FontColor.Color is
specified:

* If osdOptions.TextOption.FontColor.Color.ColorList is specified:

+ OSD.TextString.FontColor.Color := one of the values that are listed in
o0sdOptions.TextOption.FontColor.Color.ColorList

 If osdOptions.TextOption.FontColor.Color.ColorspaceRange is specified:

+ OSD.TextString.FontColor.Color.@Colorspace := Colorspace value of one of the items
that are listed in 0osdOptions.TextOption.FontColor.Color.ColorList.ColorspaceRange

» OSD.TextString.FontColor.Color.@X := value from the range [X.Min,X.Max] of the
same item in 0sdOptions.TextOption.FontColor.Color.ColorList.ColorspaceRange that
was used for the OSD.TextString.FontColor.Color.@Colorspace

296 www.onvif.org

OnviF’ | wsmanggres

+ OSD.TextString.FontColor.Color.@Y := value from the range [Y.Min,Y.Max] of the
same item in 0sdOptions.TextOption.FontColor.Color.ColorList.ColorspaceRange that
was used for the OSD.TextString.FontColor.Color.@Colorspace

» OSD.TextString.FontColor.Color.@Z := value from the range [Z.Min,Z.Max] of the
same item in 0sdOptions.TextOption.FontColor.Color.ColorList.ColorspaceRange that
was used for the OSD.TextString.FontColor.Color.@Colorspace

* If osdOptions.TextOption.FontColor.Transparent is specified:

+ OSD.TextString.FontColor.@Transparent := any value from the range
[osdOptions.TextOption.FontColor. Transparent.Min,osdOptions.TextOption.FontColor.
Transparent.Max]

otherwise, OSD.TextString.FontColor.@Transparent skipped
otherwise, OSD.TextString.FontColor skipped

o If 0sdOptions.TextOption.BackgroundColor and
o0sdOptions.TextOption.BackgroundColor.Color is specified:

* If 0sdOptions.TextOption.BackgroundColor.Color.ColorList is specified:

+ OSD.TextString.BackgroundColor.Color := one of the values that are listed in

0sdOptions.TextOption.BackgroundColor.Color.ColorList
* If osdOptions.TextOption.BackgroundColor.Color.ColorspaceRange is specified:

+ OSD.TextString.BackgroundColor.Color.@Colorspace = Colorspace value
of one of the items that are listed in
0sdOptions.TextOption.BackgroundColor.Color.ColorList.ColorspaceRange

» OSD.TextString.BackgroundColor.Color.@X = value from the
range [X.Min,X.Max] of the same item in
0sdOptions.TextOption.BackgroundColor.Color.ColorList.ColorspaceRange that was
used for the OSD.TextString.BackgroundColor.Color.@Colorspace

+ OSD.TextString.BackgroundColor.Color.@Y := value from the range [Y.Min,Y.Max] of
the same item in
0sdOptions.TextOption.BackgroundColor.Color.ColorList.ColorspaceRange that was
used for the OSD.TextString.BackgroundColor.Color.@Colorspace

+ OSD.TextString.BackgroundColor.Color.@Z := value from the range [Z.Min,Z.Max] of
the same item in

www.onvif.org 297

OnviF | empnggre

o0sdOptions.TextOption.BackgroundColor.Color.ColorList.ColorspaceRange that was

used for the OSD.TextString.BackgroundColor.Color.@Colorspace
* If 0sdOptions.TextOption.BackgroundColor.Transparent is specified:

+ OSD.TextString.BackgroundColor.@Transparent := any value from the range
[osdOptions.TextOption.BackgroundColor.Transparent.Min,
0sdOptions.TextOption.BackgroundColor. Transparent.Max]

otherwise, SD.TextString.BackgroundColor.@Transparent skipped

otherwise, OSD.BackgroundColor.FontColor skipped

* If OSD.TextString.Type = Plain:
* OSD.TextString.PlainText := any string value
otherwise, OSD.TextString.PlainText skipped

» OSD.TextString.Extension skipped

otherwise, OSD.TextString skipped

+ If OSD.Type = Image:

» OSD.Image.ImgPath = one of the values that are Ilisted in
o0sdOptions.ImageQOption.ImagePath

» OSD.Image.Extension skipped
otherwise, OSD.Image skipped
* OSD.Extension skippedd
Note: If OSD.Type = Text, but osdOptions.TextOption is skipped, the test will be FAILED.
Note: If OSD.Type = Image, but osdOptions.ImageOption is skipped, the test will be FAILED.

Note: If OSD.TextString.Type = Date or DateAndTime, but osdOptions.TextOption.DateFormat is
skipped, the test will be FAILED.

Note: If OSD.TextString.Type = Time or DateAndTime, but osdOptions.TextOption.TimeFormat is
skipped, the test will be FAILED.

A.29 OSD Picture File Parameters

ONVIF Device Test Tool uses the picture file to upload on the device with the following patameters:

298 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* File format: PNG
+ Size: no more than 1024 bytes

+ Width: 16 pixels

Height: 16 pixels

A.30 Get Metadata Configurations List

Name: HelperGetMetadataConfigurationsList
Procedure Purpose: Helper procedure to retrieve Metadata Configurations List.

Pre-requisite: Media2 Service is received from the DUT. Metadata feature under Media2 Service
is supported by the DUT.

Input: None.
Returns: Metadata Configurations List (metadataConfList).
Procedure:
1. ONVIF Client invokes GetMetadataConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetMetadataConfigurationsResponse with parameters
» Configurations list =: metadataConfList
3. If metadataConfList is empty, FAIL the test.
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send GetMetadataConfigurationsResponse message.

A.31 Get Analytics Configurations List

Name: HelperGetAnalyticsConfigurationsList

www.onvif.org 299

ONVIE® | imsgres

Procedure Purpose: Helper procedure to retrieve Analytics Configurations List.

Pre-requisite: Media2 Service is received from the DUT. Analytics feature under Media2 Service
is supported by the DUT.

Input: None.
Returns: Analytics Configurations list (analyticsConfList).
Procedure:
1. ONVIF Client invokes GetAnalyticsConfigurations request with parameters
» ConfigurationToken skipped
» ProfileToken skipped
2. The DUT responds with GetAnalyticsConfigurationsResponse with parameters
» Configurations list =: analyticsConfList
3. If analyticsConfList is empty, FAIL the test.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send GetAnalyticsConfigurationsResponse message.

A.32 Device Configuration For Create Mask

Name: HelperDeviceConfigurationForCreateMask

Procedure Purpose: Helper procedure for configuring DUT in order to add a mask.
Pre-requisite: Media2 Service is received from the DUT. Mask feature is supported by the DUT.
Input: None.

Returns: Mask Options (maskOptions). Video Source configuration token (vscToken). Mask to
restore (optional) (maskToRestore)

Procedure:

1. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters

300 www.onvif.org

OnviF | gomansg

» out videoSourceConfList1 - Video Source Configurations list

2. Foreach Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

2.1. ONVIF Client invokes GetMaskOptions request with parameters
» ConfigurationToken := videoSourceConf1.@Token

2.2. DUT responds with GetMaskOptionsResponse message with parameters
* MaskOptions =: maskQOptions

2.3. If maskOptions does not contain MaxMasks attribute, FAIL the test and skip other
steps.

2.4. If maskOptions.MaxMasks > 0O:
2.4.1. Set vscToken := videoSourceConf1.@Token
2.4.2. ONVIF Client invokes GetMasks request with parameters
+ Token skipped
+ ConfigurationToken := vscToken
2.4.3. DUT responds with GetMasksResponse message with parameters
» Masks =: maskConfList1
2.4.4. Set amountOfExistingMasks := amount of Mask items in maskConfList1
2.4.5. If amountOfExistingMasks = maskOptions.MaxMasks
2.4.5.1. Set maskToDelete := maskConfList1.Masks[0].token

2.4.5.2. ONVIF Client deletes Mask Configuration by following the procedure
mentioned in Annex A.33 with the following input parameter

* in maskToDelete - Mask Configuration token to delete
2.4.6. Skip other steps of procedure.
3. FAIL the test and skip other steps.
Procedure Result:

PASS —

www.onvif.org 301

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* DUT passes all assertions.
FAIL -
» DUT did not send GetMaskOptionsResponse message.

* DUT did not send GetMasksResponse message.

A.33 Delete Mask

Name: HelperDeleteMask
Procedure Purpose: Helper procedure to delete specified Mask.
Pre-requisite: Media2 Service is received from the DUT. Mask feature is supported by the DUT.
Input: Mask token (maskToDelete).
Returns: None.
Procedure:

1. ONVIF Client invokes DeleteMask request with parameters

» Token := maskToDelete

2. DUT responds with DeleteMaskResponse message
Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

+ DUT did not send DeleteMaskResponse message.

A.34 Device Configuration For Get Masks Test Case

Name: HelperDeviceConfigurationForGetMasks

Procedure Purpose: Helper procedure to create mask if no mask exists at Device.
Pre-requisite: Media2 Service is received from the DUT. Mask feature is supported by the DUT.
Input: None.

Returns: Mask to remove (optional) (maskToRemove)

302 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure:
1. ONVIF Client invokes GetMasks request with parameters
» Token skipped
» ConfigurationToken skipped
2. DUT responds with GetMasksResponse message with parameters
* Masks =: maskConfCompleteList1
3. If maskConfCompleteList1 contains at least one item, skip other steps and return to the test.

4. ONVIF Client retrieves Video Source Configurations list by following the procedure
mentioned in Annex A.3 with the following input and output parameters:

» out videoSourceConfList1 - Video Source Configurations list

5. Foreach Video Source Configuration videoSourceConf1 in videoSourceConfList1 list repeat
the following steps:

5.1. ONVIF Client invokes GetMaskOptions request with parameters
+ ConfigurationToken := videoSourceConf1.@Token

5.2. DUT responds with GetMaskOptionsResponse message with parameters
* MaskOptions =: maskOptions

5.3. If maskOptions does not contain MaxMasks attribute, FAIL the test and skip other
steps.

5.4. If maskOptions.MaxMasks > 0:
5.4.1. Set vscToken := videoSourceConf1.@Token
5.4.2. ONVIF Client invokes CreateMask request with parameters
+ token := "TestMask" (note: this token can be ignored by DUT)
+ ConfigurationToken := vscToken
* Polygon :=
+ Point[0].@x :=-0.5

* Point[0].@y :=-0.5

www.onvif.org 303

Standardizing IP Connectivity
for Physical Security

* Point[1].@x :=-0.5
+ Point[1].@y := 0.5
* Point[2]l.@x :=0.5
+ Point[2].@y := 0.5
+ Point[3].@x := 0.5
* Point[3].@y :=-0.5
* Type := first value from maskOptions.Types list
* If Type = "Color":
* If maskOptions.Color.ColorList is specified:
» Color := first value that are listed in maskOptions.Color.ColorList
+ If maskOptions.Color.ColorspaceRange is specified:

* Color.@Colorspace := Colorspace value of the first item that is listed in
maskQOptions.Color.ColorspaceRange

* Color@X := value from the range [X.Min,X.Max] of the same
item in maskOptions.Color.ColorspaceRange that was used for the
Color.@Colorspace

* Color@Y := value from the range [Y.Min,Y.Max] of the same
item in maskOptions.Color.ColorspaceRange that was used for the
Color.@Colorspace

* Color@Z := value from the range [Z.Min,Z.Max] of the same
item in maskOptions.Color.ColorspaceRange that was used for the
Color.@Colorspace

» Enabled := false

5.4.3. DUT responds with CreateMaskResponse message with parameters
» Token =: maskToRemove

5.4.4. Skip other steps of procedure.

6. FAIL the test and skip other steps.

304 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure Result:

PASS -
* DUT passes all assertions.

FAIL -
» DUT did not send GetMaskOptionsResponse message.
» DUT did not send GetMasksResponse message.

» DUT did not send CreateMaskResponse message.

A.35 Create Mask

Name: HelperCreateMask

Procedure Purpose: Helper procedure for mask creation for specified Video Source Configuration
with valid options.

Pre-requisite: Media2 Service is received from the DUT. Mask feature is supported by the DUT.

Input: Video Source configuration token (vscToken). Mask Options (maskOptions). Type of Mask
(maskType).

Returns: Token of the created mask (maskToken).
Procedure:
1. ONVIF Client invokes CreateMask request with parameters
» token :="TestMask" (note: this token can be ignored by DUT)
» ConfigurationToken := vscToken

+ Polygon := Point[0].@x="-0.4", Point[0]. @y="-0.2", Point[1].@x="-0.2", Point[1]. @y="0.3",
Point[2]. @x="0.1", Point[2]. @y="0.4", Point[3].@x="0.3", Point[3].@y="-0.3" if
maskOptions.RectangleOnly is false or skipped. Else Polygon := Point[0].@x="-0.5",
Point[0].@y="-0.5", Point[1].@x="-0.5", Point[1].@y="0.5", Point[2].@x="0.5",
Point[2].@y="0.5", Point[3].@x="0.5", Point[3].@y="-0.5"

* Type := maskType
« If Type = “Color”:

* If maskOptions.Color.ColorList is specified:

www.onvif.org 305

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» Color := first value that are listed in maskOptions.Color.ColorList

* If maskOptions.Color.ColorspaceRange is specified:

* Color.@Colorspace := Colorspace value of the first item that is listed in
maskOptions.Color.ColorspaceRange

* Color@X := value from the range [X.Min,X.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

* Color@Y := value from the range [Y.Min,Y.Max] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

+ Color@Z := value from the range [Z.Min,ZMax] of the same item in
maskOptions.Color.ColorspaceRange that was used for the Color.@Colorspace

* Enabled := false
2. DUT responds with CreateMaskResponse message with parameters
» Token of the created mask =: maskToken
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

* DUT did not send CreateMaskResponse message.

A.36 Remove all Masks from Video Source Configuration

Name: HelperMasksCleanUp

Procedure Purpose: Helper procedure, which removes all masks from Video Source
Configuration.

Pre-requisite: Media2 Service is received from the DUT. Mask feature is supported by the DUT.
Input: Video Source configuration token (vscToken).
Returns: None.

Procedure:

306 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

1. ONVIF Client invokes GetMasks request with parameters

» Token skipped
» ConfigurationToken := vscToken
2. DUT responds with GetMasksResponse message with parameters
* Masks =: maskConfList1
3. For each Mask mask in maskConfList1 list repeat the following steps:
3.1. ONVIF Client invokes DeleteMask request with parameters
+ Token := mask.@Token
3.2. DUT responds with DeleteMaskResponse message
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send DeleteMaskResponse message.

» DUT did not send GetMasksResponse message.

A.37 Get Audio Outputs List

Name: HelperGetAudioOutputsList
Procedure Purpose: Helper procedure to retrieve Audio Outputs List.
Pre-requisite: DevicelO Service is received from the DUT.
Input: None.
Returns: Audio Outputs List (audioOutputsList).
Procedure:
1. ONVIF Client invokes GetAudioOutputs request.

2. The DUT responds with GetAudioOutputsResponse with parameters

www.onvif.org 307

O n VI F ® Standardizing IP Connectivity
for Physical Security

» Token list =: audioOutputsList
3. If audioOutputsList is empty, FAIL the test.
Procedure Resulit:
PASS —
* DUT passes all assertions.
FAIL -

» DUT did not send GetAudioOutputsResponse message.

A.38 Get schedules information list

Name: HelperGetSchedulelnfoList
Procedure Purpose: Helper procedure to get complete schedules information list.
Pre-requisite: Schedule Service is received from the DUT.
Input: None.
Returns: The complete list of schedules information (schedulelnfoCompleteL.ist).
Procedure:
1. ONVIF client invokes GetSchedulelnfoList request with parameters
» Limit skipped
» StartReference skipped
2. The DUT responds with GetSchedulelnfoListResponse message with parameters
* NextStartReference =: nextStartReference
» Schedulelnfo list =: scheduleInfoCompleteList
3. Until nextStartReference is not null, repeat the following steps:
3.1. ONVIF client invokes GetSchedulelnfoList request with parameters
» Limit skipped

» StartReference := nextStartReference

308 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

3.2. The DUT responds with GetSchedulelnfoListResponse message with parameters

* NextStartReference =: nextStartReference
» Schedulelnfo list =: schedulelnfoListPart
3.3. Set the following:

» scheduleinfoCompleteList .= schedulelnfoCompleteList + schedulelnfoListPart
Procedure Result:
PASS -

» The DUT passed all assertions.

FAIL -

+ The DUT did not send GetSchedulelnfoListResponse message.

A.39 Prepare Free Space for Audio Clip adding

Name: HelperPrepareFreeSpaceForAudioClip

Procedure Purpose: Helper procedure to delete Audio Clip if maximum number of Audio Clips is
reached.

Pre-requisite: Media2 Service is received from the DUT. Audio Clip is supported by the DUT.
Input: None.

Returns: None.

Procedure:

1. ONVIF Client retrieves Media2 Service Capabilities by following the procedure mentioned
in Annex A.2 with the following input and output parameters

» out cap - Media2 Service Capabilities
2. ONVIF Client invokes GetAudioClips request with parameters
» Token skipped
3. The DUT responds with GetAudioClipsResponse message with parameters

* GetAudioClipsResponseltem list =: audioClipsList

www.onvif.org 309

O n VI F ® Standardizing IP Connectivity
for Physical Security

4. If number of items in audioClipsList = cap.AudioClipCapabilities.MaxAudioClipLimit:

4.1. ONVIF Client deletes the first Audio Clip by following the procedure mentioned in
Annex A.40 with the following input and output parameters

* in audioClipsList[0].Token - Audio Clip Token
Procedure Resulit:
PASS -
* DUT passes all assertions.
FAIL -
» DUT did not send GetAudioClipsResponse message.

* DUT did not send DeleteAudioClipResponse message.

A.40 Delete Audio Clip

Name: HelperDeleteAudioClip
Procedure Purpose: Helper procedure to delete Audio Clip.
Pre-requisite: Media2 Service is received from the DUT. Audio Clip is supported by the DUT.
Input: Audio Clip Token audioClipToken .
Returns: None.
Procedure:

1. ONVIF Client invokes DeleteAudioClip request with parameters

» Token := audioClipToken

2. The DUT responds with DeleteAudioClipResponse message.
Procedure Result:
PASS -

* DUT passes all assertions.

FAIL —

310 www.onvif.org

ONVIE® | imsgres

* DUT did not send DeleteAudioClipResponse message.

A.41 Retrieve Output Token and Corresponding Output Level
Range
Name: HelperRetrieveOutputTokenAndCorrespondingOutputLevelRange

Procedure Purpose: Helper procedure to retrieve Output Token and corresponding Output Level
Range.

Pre-requisite: Media2 Service is received from the DUT.

Input: None

Returns: Output Token (outputToken). Output Level Range (outputLevelRange).
Procedure:

1. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

* out audioOutputConfList - Audio Output Configurations list
2. ONVIF Client invokes GetAudioOutputConfigurationOptions request with parameters
» ConfigurationToken =: audioOutputConfList[0].token

3. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: audioOutputConfigurationOptions
4. Set outputToken := audioOutputConfigurationOptions.OutputTokensAvailable[0].
5. Set outputLevelRange := audioOutputConfigurationOptions.OutputLevelRange.
Procedure Result:
PASS -
» DUT passes all assertions.
FAIL -

» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

www.onvif.org 311

O n VI F ® | Standardizing IP Connectivity
for Physical Security

A.42 Get Audio Clips List

Name: GetAudioClipsList
Procedure Purpose: Helper procedure to retrieve Audio Clips List.
Pre-requisite: Media2 Service is received from the DUT. Audio Clips feature is supported.
Input: None.
Returns: Audio Clips List (audioClipsList).
Procedure:
1. ONVIF Client invokes GetAudioClips request with parameters
» Token skipped
2. DUT responds with GetAudioClipsResponse message with parameters
» GetAudioClipsResponseltem =: audioClipsCompleteList
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send GetAudioClipsResponse message.

A.43 Add and Upload Audio Clip

Name: AddAudioClipWithUploading

Procedure Purpose: Helper procedure to add an Audio Clip with required format and to upload
a corresponding audio file.

Pre-requisite: Media2 Service is received from the DUT. DevicelO Service is received from the
DUT. Audio Clips feature is supported.

Input: Audio Clip Configuration(audioClipConfig).
Returns: Audio Clip Token (audioClipToken).

Procedure:

312 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

1. ONVIF Client prepare a free space for adding of a new Audio Clip by following the procedure

mentioned in Annex A.39.
2. ONVIF Client invokes AddAudioClip request with parameters
» Token skipped
» Configuration.Enabled := audioClipConfig.Enabled
» Configuration.Name := audioClipConfig.Name
» Configuration.AudioOutputToken[0] := audioClipConfig.AudioOutputToken[0]
» Configuration.Type := audioClipConfig.Type
» Configuration.RepeatCycles := audioClipConfig.RepeatCycles
» Configuration.Repeatinterval := audioClipConfig.Repeatinterval

» Configuration.AudioOutputLevel := audioClipConfig.AudioOutputLevel

Configuration.ScheduleToken := audioClipConfig.ScheduleToken

3. DUT responds with AddAudioClipResponse message with parameters
* Token =: audioClipToken
* UploadUri =: uploadUri
* ExpiryTime

4. ONVIF Client invokes HTTP POST to uploadUri with parameters

e HTTP Header [Content-Type] := MIME type for audio that corresponds to
audioClipConfig.Type

* HTTP Body := audio file with format that corresponds to audioClipConfig.Type
5. The DUT responds with HTTP 200 OK message.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

» DUT did not send AddAudioClipResponse message.

www.onvif.org 313

OnviF | empnggre

* DUT did not send HTTP 200 OK message.

A.44 Retrieve Changed Audio Clip Event by PullPoint

Name: HelperPullAudioClipChangedEvent

Procedure Purpose: Helper procedure to retrieve Changed tns1:Media/AudioClip/State event with
PullMessages for specific Audio Output and specific Audio Clip.

Pre-requisite: Event Service is received from the DUT.

Input: Subscription reference (s), Current time for the DUT (ct), Subscription termination time (tt),
Audio Output Token (audioOutputToken), Audio Clip Token (audioClipToken).

Returns: Notification Message (message).
Procedure:
1. Until timeout1 timeout expires, repeat the following steps:
1.1. ONVIF Client waits for time t := min{(tt-ct)/2, 1 second}.
1.2. ONVIF Client invokes PullMessages to the subscription endpoint s with parameters
* Timeout := PT60S
* MessagelLimit := 1
1.3. The DUT responds with PullMessagesResponse message with parameters
» CurrentTime =: ct
» TerminationTime =: tt
» NotificationMessage list =: notificationMessageList
1.4. For each NotificationMessage.Message item (message) in notificationMessageList

1.4.1. If message fulfills all these conditions, skip other steps and return this item to
a test procedure

* message.Message.PropertyOperation = "Changed"

* message.Message contains Source.Simpleltem with
Name="AudioOutputToken" and with Value=audioOutputToken

* message.Message contains Data.Simpleltem with Name="Token" and with
Value=audioClipToken

314 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

1.5. If timeout1 timeout expires for step 1 without Notification Message that fulfills

conditions described at step 1.4.1, FAIL the test and skip other steps.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send PullMessagesResponse message.

Note: timeout1 will be taken from Operation Delay field of ONVIF Device Test Tool.

A.45 Create Schedule

Name: HelperCreateSchedule
Procedure Purpose: Helper procedure to create a Schedule with appropriate iCalendar value.

Pre-requisite: Schedule Service is received from the DUT. The DUT shall have enough free storage
capacity for one additional Schedule.

Input: None.
Returns: Schedule Token scheduleToken.
Procedure:

1. ONVIF Client gets the Schedule service capabilities by following the procedure mentioned
in Annex A.46 with the following input and output parameters

* out cap - Schedule Service Capabilities

2. ONVIF Client generates appropriate iCalendar value for the Schedule.Standard field by
following the procedure mentioned in Annex A.47with the following input and output
parameters

* in cap - Schedule Service Capabilities
* out scheduleiCalendarValue)
3. ONVIF client invokes CreateSchedule request with parameters

¢ Schedule.token :=

www.onvif.org 315

O n VI F ® Standardizing IP Connectivity
for Physical Security

Schedule.Description := "Test Description"

Schedule.Name := "Test Name"

Schedule.Standard := scheduleiCalendarValue

Schedule.SpecialDays skipped
4. The DUT responds with CreateScheduleResponse message with parameters
» Token =: scheduleToken
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send CreateScheduleResponse message.

A.46 Get service capabilities (Schedule)

Name: HelperGetServiceCapabilitiesSchedule
Procedure Purpose: Helper procedure to get service capabilities for Schedule Service.
Pre-requisite: Schedule Service is received from the DUT.
Input: None.
Returns: The service capabilities (cap).
Procedure:
1. ONVIF client invokes GetServiceCapabilities.
2. The DUT responds with a GetServiceCapabilitiesResponse message with parameters
» Capabilities =: cap
Procedure Result:
PASS -
* The DUT passed all assertions.

FAIL —

316 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» The DUT did not send GetServiceCapabilitiesResponse message.

A.47 Generate iCalendar value for Schedule

Name: HelperScheduleiCalendarGeneration

Procedure Purpose: Helper procedure to generate iCalendar value for Schedule.Standard field.
Pre-requisite: Schedule Service is received from the DUT.

Input: The Schedule service capabilities (cap).

Returns: iCalendar value for Standard field (scheduleiCalendarValue) that is compliant to [RFC
2445].

Procedure:

1. ONVIF Client generates Unique Identifier value for UID field in iCalendar by following the
procedure mentioned in Annex A.48 with the following input and output parameters

 out uid - UID field for iCalendar
2. If cap.ExtendedRecurrenceSupported is equal to true, set the following:
* scheduleiCalendarValue := "BEGIN:VCALENDAR
BEGIN:VEVENT
SUMMARY:Audio Clip Test Case
DTSTART:<current year>< current month>< current day>T<current time + delta>
DTEND: DTSTART + 1 week
RRULE:FREQ=DAILY
UID:uid
END:VEVENT
END:VCALENDAR"
3. If cap.ExtendedRecurrenceSupported is equal to false, set the following:
» scheduleiCalendarValue := "BEGIN:VCALENDAR
BEGIN:VEVENT

SUMMARY: Audio Clip Test Case

www.onvif.org 317

ONVIE® | imsgres

DTSTART:1970<current month><current day>T<current time + delta>

DTEND: DTSTART + 1 week
RRULE:FREQ=WEEKLY;BYDAY=<current week day>,<next week day>
UID:uid

END:VEVENT

END:VCALENDAR"

A.48 Generate UID value for iCalendar

Name: HelperUIDiCalendarGeneration

Procedure Purpose: Helper procedure to generate Unique Identifier value for UID field in
iCalendar.

Pre-requisite: Schedule Service is received from the DUT.

Input: None.

Returns: Unique Identifier value for UID field in iCalendar (uid) that is compliant to [RFC 2445].
Procedure:

1. ONVIF Client generates Globally Unique Identifier value.

A.49 Choose Audio Output Configuration With EQ Presets
Supporting
Name: HelperChooseAudioOutputConfigurationWithEQPresetsSupporting

Procedure Purpose: Helper procedure to choose or configure Audio Output Configuration with
EQPresets supporting.

Pre-requisite: Media2 Service is received from the DUT. Audio Output is supported by DUT. EQ
Presets is supported by DUT.

Input: None.

Returns: Token of Audio Output Configuration that supports EQ Presets (aocToken).
AudioOutputConfigurationOptions item with EQ Presets parameters that corresponds to selected
Audio Output Configuration (aocOptionsitem).

318 www.onvif.org

ONVIE® | imsgres

Procedure:

1.

ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

» out audioOutputConfList - Audio Output Configurations list

For each Audio Output Configuration audioOutputConfiguration in audioOutputConfList
repeat the following steps:

2.1. ONVIF Client invokes GetAudioOutputConfigurationOptions request with
parameters

» ConfigurationToken := audioOutputConfiguration.@token
 ProfileToken skipped

2.2. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

2.3. If options contains non empty EQPresets list, return token of audioOutputConfiguration
and options and skip other steps.

2.4. |If options.OutputTokensAvailable list contains more than one item

24.1. For each Audio Output token audioOutputToken in
options.OutputTokensAvailable list repeat the following steps:

2411, ONVIF Client invokes SetAudioOutputConfiguration request
with parameters

+ Configuration.@token := audioOutputConfiguration.@token
» Configuration.Name := audioOutputConfiguration.Name
» Configuration.OutputToken := audioOutputToken

+ Configuration.SendPrimacy =
audioOutputConfiguration.SendPrimacy

» Configuration.OutputLevel =
audioOutputConfiguration.OutputLevel

24.1.2. DUT responds with SetAudioOutputConfigurationResponse
message.

www.onvif.org 319

OnviF | empnggre

24.1.3. ONVIF Client invokes GetAudioOutputConfigurationOptions
request with parameters

» ConfigurationToken := audioOutputConfiguration.@token

* ProfileToken skipped

2414, The DUT responds with
GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

2.4.1.5. If options contains non empty EQPresets list, return token of
audioOutputConfiguration and options and skip other steps.

3. FAIL test procedure.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
* DUT did not send GetAudioOutputConfigurationOptionsResponse message.

» DUT did not send SetAudioOutputConfigurationResponse message.

A.50 Choose Audio Output Configuration With EQ Presets
Scheduling Supporting

Name: HelperChooseAudioOutputConfigurationWithEQPresetsSchedulingSupporting

Procedure Purpose: Helper procedure to choose or configure Audio Output Configuration with
EQPresets Scheduling supporting.

Pre-requisite: Media2 Service is received from the DUT. Audio Output is supported by DUT. EQ
Presets is supported by DUT. EQPresets Scheduling is supported by DUT.

Input: None.

Returns: Token of Audio Output Configuration that supports EQ Presets Scheduling (aocToken).
AudioOutputConfigurationOptions item with EQ Presets parameters that corresponds to selected
Audio Output Configuration (aocOptionsitem).

320 www.onvif.org

ONVIE® | imsgres

Procedure:

1.

ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

» out audioOutputConfList - Audio Output Configurations list

For each Audio Output Configuration audioOutputConfiguration in audioOutputConfList
repeat the following steps:

2.1. ONVIF Client invokes GetAudioOutputConfigurationOptions request with
parameters

» ConfigurationToken := audioOutputConfiguration.@token
 ProfileToken skipped

2.2. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

2.3. If options contains non empty EQPresets list and EQPresetScheduleSupport = true,
return token of audioOutputConfiguration and options and skip other steps.

2.4. |If options.OutputTokensAvailable list contains more than one item

24.1. For each Audio Output token audioOutputToken in
options.OutputTokensAvailable list repeat the following steps:

2411, ONVIF Client invokes SetAudioOutputConfiguration request
with parameters

+ Configuration.@token := audioOutputConfiguration.@token
» Configuration.Name := audioOutputConfiguration.Name
» Configuration.OutputToken := audioOutputToken

+ Configuration.SendPrimacy =
audioOutputConfiguration.SendPrimacy

» Configuration.OutputLevel =
audioOutputConfiguration.OutputLevel

24.1.2. DUT responds with SetAudioOutputConfigurationResponse
message.

www.onvif.org 321

OnviF | empnggre

24.1.3. ONVIF Client invokes GetAudioOutputConfigurationOptions
request with parameters

» ConfigurationToken := audioOutputConfiguration.@token

* ProfileToken skipped

24.1.4. The DUT responds with
GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

24.1.5. If options contains non empty EQPresets list and
EQPresetScheduleSupport = true, return token of
audioOutputConfiguration and options and skip other steps.

3. FAIL test procedure.
Procedure Result:
PASS -
» DUT passes all assertions.
FAIL -
» DUT did not send GetAudioOutputConfigurationOptionsResponse message.

» DUT did not send SetAudioOutputConfigurationResponse message.

A.51 Choose Audio Output Configuration with EQ Preset with
Frequency Decibel Management Supporting

Name:
HelperChooseAudioOutputConfigurationWithEQPresetsWithFrequencyDecibelManagementSupporting

Procedure Purpose: Helper procedure to choose or configure Audio Output Configuration with
EQPresets supporting and with at least one EQ Prset that supports Frequency Decibel update.

Pre-requisite: Media2 Service is received from the DUT. Audio Output is supported by DUT. EQ
Presets is supported by DUT. Frequency Decibel Management is supported by Device.

Input: None.

322 www.onvif.org

OnviF | empnggre

Returns: Token of Audio Output Configuration that supports EQ Presets and that
contains at least one EQ Prset that supports Frequency Decibel update (aocToken).
AudioOutputConfigurationOptions item with EQ Presets parameters that corresponds to selected
Audio Output Configuration (aocOptionsltem).

Procedure:

1. ONVIF Client retrieves Audio Output Configurations list by following the procedure
mentioned in Annex A.10 with the following input and output parameters

» out audioOutputConfList - Audio Output Configurations list

2. For each Audio Output Configuration audioOutputConfiguration in audioOutputConfList
repeat the following steps:

2.1. ONVIF Client invokes GetAudioOutputConfigurationOptions request with
parameters

» ConfigurationToken := audioOutputConfiguration.@token
* ProfileToken skipped

2.2. The DUT responds with GetAudioOutputConfigurationOptionsResponse with
parameters

+ Options =: options

2.3. If options contains EQPresets list with at least one item with
isFrequencyDecibelEditable = true, return token of audioOutputConfiguration and
options and skip other steps.

2.4. If options.OutputTokensAvailable list contains more than one item

241. For each Audio Output token audioOutputToken in
options.OutputTokensAvailable list repeat the following steps:

2411, ONVIF Client invokes SetAudioOutputConfiguration request
with parameters

Configuration.@token := audioOutputConfiguration.@token

» Configuration.Name := audioOutputConfiguration.Name

Configuration.OutputToken := audioOutputToken

» Configuration.SendPrimacy =
audioOutputConfiguration.SendPrimacy

www.onvif.org 323

O n VI F ® | Standardizing IP Connectivity
for Physical Security

+ Configuration.OutputLevel =

audioOutputConfiguration.OutputLevel

241.2. DUT responds with SetAudioOutputConfigurationResponse
message.

2.4.1.3. ONVIF Client invokes GetAudioOutputConfigurationOptions
request with parameters

» ConfigurationToken := audioOutputConfiguration.@token

* ProfileToken skipped

2414, The DUT responds with
GetAudioOutputConfigurationOptionsResponse with
parameters

» Options =: options

2.4.1.5. If options contains EQPresets list with at least one item
with isFrequencyDecibelEditable = true, return token of
audioOutputConfiguration and options and skip other steps.

3. FAIL test procedure.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -
+ DUT did not send GetAudioOutputConfigurationOptionsResponse message.

» DUT did not send SetAudioOutputConfigurationResponse message.

A.52 Get service capabilities for Advanced Security service

Name: HelperGetServiceCapabilities_ AdvancedSecurity
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification

» ONVIF Security Configuration Device Test Specification

324 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» ONVIF Base Device Test Specification

» ONVIF Media2 Configuration Device Test Specification
Procedure Purpose: Helper procedure to get service capabilities.
Pre-requisite: Security Configuration Service is received from the DUT.
Input: None
Returns: The service capabilities (cap).
Procedure:

1. ONVIF Client invokes GetServiceCapabilities

2. The DUT responds with GetServiceCapabilitiesResponse message with parameters

» Capabilities =: cap

Procedure Result:
PASS -

» DUT passes all assertions.
FAIL -

+ DUT did not send GetServiceCapabilitiesResponse message.

A.53 Create a certification path validation policy for
authentication server configuration
Name: HelperCreateCertPathValidationPolicyForAuthServer
Notes: Annex is used at:
* ONVIF Security Configuration Device Test Specification
* ONVIF Uplink Test Specification
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Media2 Configuration Device Test Specification

Procedure Purpose: Helper procedure to create a certification path validation policy for
authentication server configuration.

www.onvif.org 325

OnviF’ | wsmanggres

Pre-requisite: Security = Configuration Service is received from the DUT.
Certification path validation policy supported by the DUT as indicated by the
MaximumNumberOfCertificationPathValidationPolicies capability. UploadCertificate is supported
by the DUT as indicated by the PKCS10ExternalCertificationWithRSA or PKCS10 capability. The
DUT shall have enough free storage capacity for one additional certification path validation policy.
The DUT shall have enough free storage capacity for one additional certification path. The DUT
shall have enough free storage capacity for one additional certificate. The DUT shall have enough
free storage capacity for one additional key pair.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm). The certification
path validation policy alias (certPathValidationPolicyAlias). The subject (subject) of CA certificate
(optional input parameter, could be skipped).

Returns: The certification path validation policy identifier (certPathValidationPolicylD), related
certificate (certID), key pair (keyID), CA certificate (out CAcert) CA certificate private key (out
privateKey).

Procedure:

1. ONVIF Client creates a CA certificate and a corresponding private key by following the
procedure described in Annex A.54 with the following input and output parameters:

* in cap - DUT capabilities
» out CAcert - CA certificate
» out privateKey - private key
2. ONVIF Client invokes UploadCertificate with parameters
 Certificate := CAcert
* Alias := "ONVIF Test"
» PrivateKeyRequired : = false
3. The DUT responds with a UploadCertificateResponse message with parameters
+ CertificatelD =: certiD
» KeylD =: keylD

4. ONVIF Client creates certification path validation policy identifier with specified alias and the
certificate identifier for trust anchor by following the procedure mentioned in Annex A.58 with
the following input and output parameters:.

 in certlD - certificate identifier for trust anchor

326 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in certPathValidationPolicyAlias - certification path validation policy alias

» out certPathValidationPolicyID - certification path validation policy identifier
Procedure Result:
PASS —
* DUT passes all assertions.
FAIL -

+ DUT did not send UploadCertificateResponse message.

A.54 Provide CA certificate

Name: HelperCreateCACertificate
Notes: Annex is used at:
» ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification
Procedure Purpose: Helper procedure to create an X.509 CA certificate.
Pre-requisite: None.

Input: The subject (subject) of certificate (optional input parameter, could be skipped). The service
capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: An X.509 CA certificate (CAcert) that is compliant to [RFC 5280] and a corresponding
key pair (keyPair) with private key and public key.

Procedure:

1. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.55 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
 out signatureAlgorithm - signature algorithm

2. ONVIF Client generates a key pair by following the procedure mentioned in Annex A.56 with
the following input and output parameters:

www.onvif.org 327

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* out keyPair - key pair
3. If subject is skipped set:
* subject := "CN=ONVIF TT,C=US"

4. ONVIF Client creates an X.509 self-signed CA certificate that is compliant to [RFC 5280]
and has the following properties:

e version :=v3

» signature := signatureAlgorithm

validity := not before 19700101000000Z and not after 99991231235959Z
* subject := subject
* public key := keyPair .publicKey
 private key to be used := keyPair.privateKey
Note: ONVIF Client may return the same CA certificate in subsequent invocations of this procedure

for the same subject.

A.55 Signature Algorithm Selection

Name: HelperSignatureAlgorithmSelection

Notes: Annex is used at:
» ONVIF Real Time Streaming using Media2 Device Test Specification
» ONVIF Security Configuration Device Test Specification
* ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to select signature algorithm wich will be used for tests
based on Device capabilities.

Pre-requisite: Security Configuration Service is received from the DUT.
Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: The signature algorithm (signatureAlgorithm).

328 www.onvif.org

OnviF | empnggre

Procedure:

1. If keyAlgorithm = RSA: ONVIF Client selects signature algorithm (signatureAlgorithm)
that will be wused for the test from the list provided by DUT at
cap.KeystoreCapabilities.SignatureAlgorithms. Selection is done among the following list of
signature algorithms supported by the Client by priority from first to last:

+ 1.2.840.113549.1.1.13 (OID of SHA-512 with RSA Encryption algorithm)

1.2.840.113549.1.1.12 (OID of SHA-384 with RSA Encryption algorithm)

1.2.840.113549.1.1.11 (OID of SHA-256 with RSA Encryption algorithm)

1.2.840.113549.1.1.14 (OID of SHA-224 with RSA Encryption algorithm)

1.2.840.113549.1.1.5 (OID of SHA-1 with RSA Encryption algorithm)

2. If keyAlgorithm = ECC: ONVIF Client selects signature algorithm (signatureAlgorithm)
that will be wused for the test from the Ilist provided by DUT at
cap.KeystoreCapabilities.SignatureAlgorithms. Selection is done among the following list of
signature algorithms supported by the Client by priority from first to last:

+ 1.2.840.10045.4.3.4 (OID of SHA-512 with ECC Encryption algorithm)

1.2.840.10045.4.3.3 (OID of SHA-384 with ECC Encryption algorithm)

1.2.840.10045.4.3.2 (OID of SHA-256 with ECC Encryption algorithm)

1.2.840.10045.4.3.1 (OID of SHA-224 with ECC Encryption algorithm)

1.2.840.10045.4.1 (OID of SHA-1 with ECC Encryption algorithm)

3. If the previous steps is done with empty signature algorithm (signatureAlgorithm): FAIL the
procedure.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not return any of signature algorithms listed at step 1 or 2.

A.56 Generate a key pair

Name: HelperGenerateKeyPair

www.onvif.org 329

ONVIE® | imsgres

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
» ONVIF Security Configuration Device Test Specification
* ONVIF Base Device Test Specification
Procedure Purpose: Helper procedure to generate a key pair.
Pre-requisite: None.
Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).

Returns: A [RFC 3447] compliant RSA or [RFC 5480, RFC 5915] compliant ECC key pair (keyPair)
with new public key and private key.

Procedure:

1. ONVIF Client determines the key pair generation params by following the procedure
mentioned in Annex A.57 with the following input and output parameters:

* in cap - DUT capabilities

* in keyAlgorithm - key pair algorithm

» out keyGenParams - key pair generation params
2. If keyGenParams.algorithm = RSA:

a. Create an [RFC 3447] compliant RSA key pair (out keyPair) with new public key and
private key with the following properties:

+ KeylLength := keyGenParams.keylLength
3. If keyGenParams.algorithm = ECC:

a. Create an [RFC 5480, RFC 5915] compliant ECC key pair (out keyPair) with new public
key and private key with the following properties:

+ EllipticCurve := keyGenParams.ellipticCurve

A.57 Determine key pair generation params
Name: HelperDetermineKeyPairGenerationParams
Notes: Annex is used at:

* ONVIF Real Time Streaming using Media2 Device Test Specification

330 www.onvif.org

ONVIE® | imsgres

» ONVIF Security Configuration Device Test Specification

* ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to determine the key pair generation params to use during
testing.

Pre-requisite: Security Configuration Service is received from the DUT. On-board ECC or RSA
key pair generation is supported by the DUT as indicated by the ECCKeyPairGeneration or
RSAKeyPairGeneration capability.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).
Returns: The key pair generation params (keyGenParams).
Procedure:

1. If keyAlgorithm = RSA:

a. ONVIF Client loops through the supported Key length list
(cap.KeystoreCapabilities .RSAKeyLengths) and selects the smallest supported key
length (keyLength).

b. ONVIF Client creates the RSA key generation params (keyGenParams) with the key
length (keyLength).

2. If keyAlgorithm = ECC:

a. ONVIF Client loops through the supported elliptic curves list
(cap.KeystoreCapabilities.EllipticCurves) and selects the simplest elliptic curve
(ellipticCurve).

b. ONVIF Client creates the ECC key generation params (keyGenParams) with the elliptic
curve (ellipticCurve).

3. If previous steps is done with empty key pair generation params (keyGenParams): FAIL the
procedure.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

* No supported RSA key length was found at step 1.1 or no supported ECC elliptic curves was
found at step 2.1.

www.onvif.org 331

OnviF | empnggre

A.58 Create a certification path validation policy with provided

certificate identifier

Name: HelperCreateCertPathValidationPolicyWithCertID
Notes: Annex is used at:
* ONVIF Security Configuration Device Test Specification
» ONVIF Uplink Test Specification
* ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to create a certification path validation policy with provided
certificate identifier.

Pre-requisite: = Security = Configuration Service is received from the DUT.
Certification path validation policy supported by the DUT as indicated by the
MaximumNumberOfCertificationPathValidationPolicies capability. The DUT shall have enough free
storage capacity for one additional certification path validation policy.

Input: The certification path validation policy alias (alias) and the certificate identifier (cert/D) for
trust anchor.

Returns: The certification path validation policy identifier (certPathValidationPolicyID).
Procedure:
1. ONVIF Client invokes CreateCertPathValidationPolicy with parameters
+ Alias := alias
* Parameters.RequireTLSWWW(ClientAuthExtendedKeyUsage skipped
» Parameters.UseDeltaCRLs = true

* Parameters.anyParameters skipped

L]

TrustAnchor[0].CertificatelD := cert/ID
» anyParameters skipped

2. The DUT responds with CreateCertPathValidationPolicyResponse message with
parameters

» CertPathValidationPolicyID := certPathValidationPolicylD

Procedure Result:

332 www.onvif.org

OnviF’ | wsmanggres

PASS —
* DUT passes all assertions.
FAIL -

» DUT did not send CreateCertPathValidationPolicyResponse message.

A.59 Configure Authorization Server On Device and Start It

Name: HelperConfigureAndStartAuthServer

Procedure Purpose: Helper procedure configures connection Authorization Server on Device and
starts Authorization Server.

Pre-requisite:Security Configuration Service is received from the DUT. Authorization
Server Configuration is supported by the DUT as indicated by the
AuthorizationServer.MaxConfigurations capability. OAuthClientCredentials authentication method
is supported by the DUT as indicated by the AuthorizationServer.ConfigurationTypesSupported
capability. client_secret_basic authentication is supported by the DUT as indicated
by the AuthorizationServer.ClientAuthenticationMethodsSupported capability. Access token
authentication is supported by the DUT as indicated by the AuthorizationModes = AccessToken
capability.

Input: Security Configuration Service Capabilities (cap).

Returns: Authentication server configuration token (authServerConfToken). Authentication scope
(scope1). Authentication server metadata endpoint (authServerMetadataEndpoint1).

Procedure:

1. ONVIF Client deletes one authorization server configuration if maximum is reached by
following the procedure described in Annex A.60 with the following input and output
parameters:

* in cap - DUT capabilities
» out itemToRestore1 - deleted authorization server configuration if any
2. Set:

* keyAlgorithm := "ECC" if cap.KeystoreCapabilities. ECCKeyPairGeneration = true; "RSA"
otherwise.

3. ONVIF Client selects authorization server type and authentication method by following the
procedure mentioned in Annex A.63 with the following input and output parameters:

www.onvif.org 333

334

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in cap - DUT capabilities

* in authServerType - authorization server configuration type

« out authMethod - authentication method

4. ONVIF Client configures authentication server connection using the following steps:

41.

4.2.

ONVIF Client creates certification path validation policy by following the procedure
mentioned in Annex A.53 with the following input and output parameters

* in cap - DUT capabilities
* in keyAlgorithm - DUT capabilities
+ in "C=US,0=0ONVIF,CN=ONVIF TT AuthServer 1" - CA certificate subject

+ in "Test CertPathValidationPolicy AuthServer Alias" - certification path validation
policy alias

» out certPathValidationPolicyIDAuthServer - certification path validation policy
identifier

* out certIDAuthServer - certificate identifier

» out keylDAuthServer - RSA key pair identifier

» out CACertAuthServer - CA certificate

+ out privateKeyCACertAuthServer - CA certificate private key

ONVIF Client creates a certificate signed by private key of the CA-certificate with
subject and a corresponding public key in the certificate along with the corresponding
private key by following the procedure described in Annex A.62 with the following input
and output parameters:

* in cap - DUT capabilities

+ in "C=US,0=0NVIF,CN=Authorization Server IP Address" - certificate subject
* in "Authorization Server IP Address" - certificate SAN

» in CACertAuthServer - CA-certificate

» in privateKeyCACertAuthServer - private key of CA-certificate for certificate
signature

www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» out certAuthServer - certificate
 out publicKeyAuthServer - public key of certificate
» out privateKeyAuthServer - private key of certificate

4.3. ONVIF Client starts Authorization server with metadata endpoint
authServerMetadataEndpoint1 conforming to RFC8414 with following settings:

+ ltis configured to certAuthServer as a server certificate.
* It is configured authServerType authorization server type.
+ ltis configured to accept authMethod authentication method.

4.4. If authMethod is private_key_jwt ONVIF Client configures key pair using the following
steps:

4.4.1.0ONVIF Client creates a key pair and get public key from device by following
the procedure described in Annex A.64 with the following input and output
parameters:

* in cap - DUT capabilities

* in keyAlgorithm - CSR key pair algorithm
* out keylD1Auth1 - key pair

+ out publicKeyAuth1 - public key

4.5. ONVIF Client configures Authorization Server with the following credentials to be
authorized:

client identifier client/D1

+ client secret clientSecret1

* scope scopet

+ public key publicKeyAuth1 assigned if authMethod is private_key_jwt

4.6. ONVIF Client invokes CreateAuthorizationServerConfiguration request with
parameters

» Type := authServerType

» ClientAuth := authMethod

www.onvif.org 335

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» ServerUri := authServerMetadataEndpoint1

+ ClientlD := clientID1

» ClientSecret := clientSecret1

» Scope := scopel

+ KeyID := keyID1Auth1 if authMethod is private_key_jwt, otherwise is skipped
* CertificatelD is skipped

+ CertPathValidationPolicylD := certPathValidationPolicylDAuthServer

4.7. The DUT responds with CreateAuthorizationServerConfigurationResponse
message with parameters

+ Token =: authServerConfToken
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

+ DUT did not send CreateAuthorizationServerConfigurationResponse message.

A.60 Make Sure That At Least One Authorization Server
Configuration Could Be Created

Name: HelperEmptySpaceForOneAuthorizationServerConfiguration
Notes: Annex is used at:

* ONVIF Security Configuration Device Test Specification

* ONVIF Uplink Test Specification

* ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to remove one authorization server configuration if
maximum is reached.

336 www.onvif.org

ONVIE® | imsgres

Pre-requisite: Security Configuration Service is received from the DUT. Authorization Server
Configuration is supported by the DUT as indicated by the AuthorizationServer.MaxConfigurations
capability.

Input: The service capabilities (cap).

Returns: Removed authorization server configuration (removedAuthServerConfiguration), could
be empty.

Procedure:

1. ONVIF Client gets current authorization server configurations by following the procedure
mentioned in Annex A.61 with the following input and output parameters:

» out authServerConfigurations1 list - authorization server configurations

2. If authServerConfigurations1 items number is equal to
cap.AuthorizationServer.MaxConfigurations:

2.1. Set the following:
» removedAuthServerConfiguration := authServerConfigurations1[0]

2.2. ONVIF Client invokes DeleteAuthorizationServerConfiguration with parameter
+ Token := removedAuthServerConfiguration.token

2.3. The DUT responds with DeleteAuthorizationServerConfigurationResponse
message.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

* DUT did not send DeleteAuthorizationServerConfigurationResponse message.

A.61 Get Authorization Server Configurations List

Name: HelperGetAuthorizationServerConfigurations
Notes: Annex is used at:

» ONVIF Security Configuration Device Test Specification

www.onvif.org 337

O n VI F ® | Standardizing IP Connectivity
for Physical Security

» ONVIF Uplink Test Specification
» ONVIF Real Time Streaming using Media2 Device Test Specification
Procedure Purpose: Helper procedure to get authorization server configurations list.

Pre-requisite: Security Configuration Service is received from the DUT. Authorization Server
Configuration is supported by the DUT as indicated by the AuthorizationServer.MaxConfigurations
capability.

Input: None
Returns: Authorization server configurations list (authServerConfigurations).
Procedure:
1. ONVIF Client invokes GetAuthorizationServerConfigurations request with parameters
» Token is skipped

2. The DUT responds with GetAuthorizationServerConfigurationsResponse message with
parameters

» Configuration list =: authServerConfigurations
Procedure Result:
PASS —
* DUT passes all assertions.
FAIL -

» DUT did not send GetAuthorizationServerConfigurationsResponse message.

A.62 Provide certificate signed by private key of other
certificate
Name: HelperCreateSignedCertificate
Notes: Annex is used at:
* ONVIF Security Configuration Device Test Specification
* ONVIF Uplink Test Specification

* ONVIF Real Time Streaming using Media2 Device Test Specification

338 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure Purpose: Helper procedure to create an X.509 certificate signed by private key of other

certificate.
Pre-requisite: None.

Input: The subject (subject) of certificate and private key (inputPrivateKey) of the CA-certificate
(cert). The service capabilities (cap). The key pair algorithm (keyAlgorithm). Certificate SAN
(certSAN, optional).

Returns: An X.509 certificate (cert) signed by input private key that is compliant to [RFC 5280] and
a corresponding key pair (keyPair) with the corresponding private key and public key.

Procedure:

1. ONVIF Client generates a key pair by following the procedure mentioned in Annex A.56 with
the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
* out keyPair - key pair

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.55 with the following input and output parameters:

* in cap - DUT capabilities
* in inputPrivateKey.algorithm - key pair algorithm
» out signatureAlgorithm - signature algorithm

3. ONVIF Client creates an X.509 certificate signed by inputPrivateKey that is compliant to
[RFC 5280] and has the following properties:

» version:=v3

* signature := signatureAlgorithm
* publicKey := keyPair.publicKey
« validity := validity from cert

* subject := subject

* SAN := certSAN

* issuerDN := subjectDN from cert

www.onvif.org 339

OnviF | empnggre

Note: ONVIF Client may return the same certificate in subsequent invocations of this procedure for
the same subject and private key.

A.63 Authorization Server Configuration Type And
Authentication Method Selection
Name: HelperAuthServerTypeAndMethodSelection
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification

Procedure Purpose: Helper procedure to select type and authentication method for authorization
server configuration which will be used for tests based on Security Configuration Service
capabilities.

Pre-requisite: Security Configuration Service is received from the DUT.
Input: The service capabilities (cap).

Returns: The authorization server configuration type (authServerType). The authentication method
(authMethod).

Procedure:

1. ONVIF Client selects authorization server configuration type (authServerType)
that will be wused for the test from the list provided by DUT at
cap.AuthorizationServer.ConfigurationTypesSupported. Selection is done among the
following list of server configuration type supported by the ONVIF Client by priority from first
to last:

* OAuthClientCredentials

2. ONVIF Client selects authentication method (authMethod) that will
be used for the test from the list provided by DUT at
cap.AuthorizationServer.ClientAuthenticationMethodsSupported. Selection is done among
the following list of server configuration type supported by the ONVIF Client by priority from
first to last:

 client_secret_basic
» private_key_jwt

3. If after the previous steps execution authorization server configuration type
(authServerType) is empty, FAIL the procedure.

340 www.onvif.org

OnviF | empnggre

4. If after the previous steps execution authentication method (authMethod) is empty, FAIL the
procedure.

Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

» DUT did not return any of signature algorithms listed at step 1 or 2.

A.64 Create Key Pair and Receive Public Key

Name: HelperCreateKeyPairAndReceivePublicKey
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Uplink Test Specification
Procedure Purpose: Helper procedure to create a key pair and get public key from the device.

Pre-requisite: Security Configuration Service is received from the DUT. Create PCKS#10
supported by the DUT as indicated by the PKCS10 or PKCS10ExternalCertificationWithRSA
capability. On-board ECC or RSA key pair generation is supported by the DUT as indicated by
the ECCKeyPairGeneration or RSAKeyPairGeneration capability. The DUT shall have enough free
storage capacity for one additional key pair. Current time of the DUT shall be at least Jan 01, 1970.

Input: The service capabilities (cap). The CSR key pair algorithm (csrKeyAlgorithm).
Returns: The identifier of the new key pair (keyID), a public key (publicKey).
Procedure:

1. ONVIF Client creates a key pair by following the procedure mentioned in Annex A.65 with
the following input and output parameters:

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
* out csrKeyID - key pair ID

2. ONVIF Client selects signature algorithm by following the procedure mentioned in Annex
A.55 with the following input and output parameters:

www.onvif.org 341

O n VI F ® | Standardizing IP Connectivity
for Physical Security

* in cap - DUT capabilities
* in csrKeyAlgorithm - key pair algorithm
» out caSignatureAlgorithm - signature algorithm
3. ONVIF Client invokes CreatePKCS10CSR with parameters
* Subject ;= subject (see Annex A.67)

* KeylD := csrKeylD

CSRAttribute skipped

SignatureAlgorithm.algorithm := signatureAlgorithm
4. The DUT responds with CreatePKCS10CSRResponse message with parameters
*» PKCS10CSR =: PKCS10request
5. ONVIF Client extracts public key publicKey from PKCS10request.
Procedure Result:
PASS -
* DUT passes all assertions.
FAIL -

* DUT did not send CreatePKCS10CSRResponse message.

A.65 Create a key pair

Name: HelperCreateKeyPair

Notes: Annex is used at:
+ ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
+ ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to create ECC or RSA key pair

Pre-requisite: Security Configuration Service is received from the DUT. On-board ECC or RSA
key pair generation is supported by the DUT as indicated by the ECCKeyPairGeneration or

342 www.onvif.org

O n VI F ® | Standardizing IP Connectivity
for Physical Security

RSAKeyPairGeneration capability. The DUT shall have enough free storage capacity for one

additional key pair.

Input: The service capabilities (cap). The key pair algorithm (keyAlgorithm).
Returns: The identifier of the new key pair (keyID).

Procedure:

1. ONVIF Client determines the key pair generation params by following the procedure
mentioned in Annex A.57 with the following input and output parameters:

* in cap - DUT capabilities
* in keyAlgorithm - key pair algorithm
» out keyGenParams - key pair generation params
2. If keyGenParams.algorithm = RSA:
a. ONVIF Client invokes CreateRSAKeyPair with parameter
* KeyLength := keyGenParams.keylLength
b. The DUT responds with CreateRSAKeyPairResponse message with parameters
* KeylID =: keylD
» EstimatedCreationTime =: duration
3. If keyGenParams.algorithm = ECC:
a. ONVIF Client invokes CreateECCKeyPair with parameter
+ EllipticCurve := keyGenParams.ellipticCurve
b. The DUT responds with CreateECCKeyPairResponse message with parameters
+ KeyID =: keylD
+ EstimatedCreationTime =: duration
4. Until operationDelay + duration expires repeat the following steps:
4.1. ONVIF Client waits for 5 seconds.
4.2. ONVIF Client invokes GetKeyStatus with parameters

* KeyID := keyID

www.onvif.org 343

ONVIE® | imsgres

4.3. The DUT responds with GetKeyStatusResponse message with parameters

+ KeyStatus =: keyStatus

4.4. If keyStatus is equal to "ok", keylD will be return as a result of the procedure, other
steps will be skipped.

4.5. If keyStatus is equal to "corrupt", FAIL the procedure and deletes the key pair (keyID)
by following the procedure mentioned in Annex A.66.

5. If operationDelay + duration expires for step 4 and the last keyStatus is other than "ok",
FAIL the procedure and deletes the key pair (key/D) by following the procedure mentioned
in Annex A.66.

Procedure Result:
PASS —

* DUT passes all assertions.
FAIL -

« DUT did not send CreateRSAKeyPairResponse or CreateECCKeyPairResponse
message.

+ DUT did not send GetKeyStatusResponse message(s).

Note: operationDelay will be taken from Operation Delay field of ONVIF Device Test Tool.

A.66 Delete a key pair

Name: HelperDeleteKeyPair

Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
* ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification

Procedure Purpose: Helper procedure to delete a key pair.

Pre-requisite: Security Configuration Service is received from the DUT. On-board RSA or ECC
key pair generation is supported by the DUT as indicated by the RSAKeyPairGeneration or
ECCKeyPairGeneration capability.

344 www.onvif.org

O n VI F ® Standardizing IP Connectivity
for Physical Security

Input: The identifier of the key pair (keylD) to delete.
Returns: None
Procedure:

1. ONVIF Client invokes DeleteKey with parameters

* KeylD := keylD

2. DUT responds with a DeleteKeyResponse message.
Procedure Result:
PASS -

* DUT passes all assertions.
FAIL -

« DUT did not send DeleteKeyResponse message.

A.67 Subject for a server certificate

Name: HelperSubjectForServerCertificate
Notes: Annex is used at:
* ONVIF Real Time Streaming using Media2 Device Test Specification
» ONVIF Security Configuration Device Test Specification
» ONVIF Base Device Test Specification
Use the following subject for test cases:
+ Subject.Country := "US"

» Subject.CommonName := <DUT IP-address>

A.68 Find Media Profile for Streaming

Name: HelperFindMediaProfileForStreaming
Notes: Annex is used at:

* ONVIF Real Time Streaming using Media2 Device Test Specification

www.onvif.org 345

O n VI F ® | Standardizing IP Connectivity
for Physical Security

Procedure Purpose: Helper procedure to find existing Media Profile to contain Video Source
Configuration and Video Encoder Configuration or Audio Source Configuration and Audio Encoder
Configuration.

Pre-requisite: Media2 Service is received from the DUT. Video Streaming or Audio Streaming is
supported by the DUT.

Input: None.

Returns: Media Profile (profile1) containing Video Source Configuration and Video Encoder
Configuration or Audio Source Configuration and Audio Encoder Configuration.

Procedure:
1. ONVIF Client invokes GetProfiles request with parameters
» Token skipped
« Type[0] := All
2. The DUT responds with GetProfilesResponse message with parameters
» Profiles list =: profileList

3. Set profilesListWithVideo1 := all items from profileList which item with Configurations
contains both Video Source Configuration and Video Encoder Configuration

4. If profilesListWithVideo1 is not empty:
4.1. Set profile1 := profilesListWithVideo 1[0]
4.2. Skip other steps of the annex.

5. Set profilesListWithAudio1 := all items from profileList which item with Configurations
contains both Audio Source Configuration and Audio Encoder Configuration

6. If profilesListWithAudio1 is not empty:
6.1. Set profile1 := profilesListWithAudio1[0]
6.2. Skip other steps of the annex.
7. FAIL the test and skip other steps.
Procedure Result:
PASS -

* DUT passes all assertions.

346 www.onvif.org

O nVI F | Standardizing IP Connectivity
for Physical Security

FAIL -

* DUT did not send GetProfilesResponse message.

www.onvif.org 347

