
ONVIF™ – 1 –  Advanced Security Service 
Ver. 1.1 

 

 
 
 
 
 
 
 
 

ONVIF™ 
Advanced Security Service Specification 

 
 

Version 1.1 
December 2014 

 
 
 

 
 



ONVIF™ – 2 –  Advanced Security Service 
Ver. 1.1 

 
 2008-2014 by ONVIF: Open Network Video Interface ForumInc.. All rights reserved. 

Recipients of this document may copy, distribute, publish, or display this document so long as this 
copyright notice, license and disclaimer are retained with all copies of the document. No license is 
granted to modify this document. 
THIS DOCUMENT IS PROVIDED "AS IS," AND THE CORPORATION AND ITS MEMBERS AND 
THEIR AFFILIATES, MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS 
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH 
CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER 
RIGHTS. 
IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE 
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL 
DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS 
DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES 
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES 
WERE REASONABLY FORESEEABLE, AND ARISING OUT OF OR RELATING TO ANY USE OR 
DISTRIBUTION OF THIS DOCUMENT.  THE FOREGOING DISCLAIMER AND LIMITATION ON 
LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS AND WARRANTIES 
MADE BY THE MEMBERS AND THEIR RESPECTIVE AFFILIATES TO THE CORPORATION AND 
OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE CORPORATION. 
 

 



ONVIF™ – 3 –  Advanced Security Service 
Ver. 1.1 

 
CONTENTS  

1 Scope 4 

2 Normative references 4 

3 Terms and Definitions 6 

3.1 Definitions........................................................................................................................ 6 

3.2 Abbreviations .................................................................................................................. 6 
3.3 Namespace ..................................................................................................................... 6 

4 Overview 8 

5 Advanced Security Service 8 

5.1 General Structure ............................................................................................................ 8 

5.2 Keystore .......................................................................................................................... 8 
5.2.1 Elements of the Keystore ............................................................................................ 8 
5.2.2 Unique Identifiers ........................................................................................................ 9 
5.2.3 Uniqueness of Objects in the Keystore ...................................................................... 9 
5.2.4 Referential Integrity ..................................................................................................... 9 
5.2.5 Key Status ................................................................................................................. 10 
5.2.6 Keystore Operations ................................................................................................. 10 

5.3 TLS Server .................................................................................................................... 31 
5.3.1 Elements of the TLS Server ...................................................................................... 31 
5.3.2 TLS Server Operations ............................................................................................. 31 

5.4 Capabilities .................................................................................................................... 35 
5.4.1 Advanced Security Service Capabilities ................................................................... 35 
5.4.2 Keystore Capabilities ................................................................................................ 35 
5.4.3 TLS Server Capabilities ............................................................................................ 36 
5.4.4 Capability-implied Requirements .............................................................................. 37 

5.5 Events ........................................................................................................................... 40 
5.5.1 Key Status ................................................................................................................. 40 

5.6 Service specific data types............................................................................................ 40 

5.7 Service specific fault codes ........................................................................................... 41 
6 Security Considerations 43 

7 Design Rationale 44 

7.1 General Design Goals ................................................................................................... 44 

7.2 Keystore ........................................................................................................................ 44 

7.3 TLS Server .................................................................................................................... 44 
Annex A. Revision History 45 
 



ONVIF™ – 4 –  Advanced Security Service 
Ver. 1.1 

 
1 Scope 

This document defines the web service interface for ONVIF Advanced Security Features such 
as a keystore and a TLS server on an ONVIF device. 

Web service usage is outside of the scope of this document. Please refer to the ONVIF core 
specification. 

2 Normative References 

ONVIF Core Specification 

<http://www.onvif.org/specs/core/ONVIF-Core-Specification-v220.pdf> 

RFC 2246 The TLS Protocol Version 1.0 

<http://www.ietf.org/rfc/rfc2246.txt> 

RFC 2898 PKCS#5 Password-based Cryptography Specification v2.0 

<http://www.ietf.org/rfc/rfc2898.txt> 

RFC 2986  PKCS #10: Certification RequestSyntaxSpecification Version 1.7 

<http://www.ietf.org/rfc/rfc2986.txt> 

RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure 
Certificate and Certificate Revocation List (CRL) Profile 

<http://www.ietf.org/rfc/rfc3279.txt> 

RFC 3447 Public Key Cryptography Standards #1: RSA Cryptogaphy Specifications Version 
2.1 

<http://www.ietf.org/rfc/rfc3447.txt> 

RFC 4055 Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet 
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile 

<http://www.ietf.org/rfc/rfc4055.txt> 

RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1 

<http://www.ietf.org/rfc/rfc4346.txt> 

RFC 5208 Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax 
Specification v1.2 

<http://www.ietf.org/rfc/rfc5208.txt> 

RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List 
(CRL) Profile 

<http://www.ietf.org/rfc/rfc5280.txt> 

RFC 5958 Asymmetric Key Packages 

<http://www.ietf.org/rfc/rfc5958.txt> 

RFC 5959 Algorithms for Asymmetric Key Package Content Type 

<http://www.ietf.org/rfc/rfc5959.txt> 

Unified Modeling Language (UML)  

http://www.onvif.org/specs/core/ONVIF-Core-Specification-v220.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5958.txt
http://www.ietf.org/rfc/rfc5959.txt


ONVIF™ – 5 –  Advanced Security Service 
Ver. 1.1 

 
<http://www.omg.org/spec/UML> 

PKCS#5 Password-based Encryption Standard v1.5, RSA Laboratories, 1993 

PKCS#12: Personal Information Exchange Syntax v1.0, RSA Laboratories, 1999 

 

  

http://www.omg.org/spec/UML


ONVIF™ – 6 –  Advanced Security Service 
Ver. 1.1 

 
3 Terms and Definitions 

3.1 Definitions 

Alias  An alias is a name for an object on the device that is chosen by the 
client and treated transparently by the device. 

Certificate  A certificate as used in this specification binds a public key to a subject 
entity. The certificate is digitally signed by the certificate issuer (the 
certification authority) to allow for verifying its authenticity. 

Certification 
Authority 

 A certification authority is an entity that issues certificates to subject 
entities. 

Certification 
Path 

 A certification path is a sequence of certificates in which the signature of 
each certificate except for the last certificate can be verified with the 
subject public key in the next certificate in the sequence. 

Digital 
Signature 

 A digital signature for an object allows to verify the object’s authenticity, 
i.e., to check whether the object has in fact been created by the signer 
and has not been modified afterwards. A digital signature is based on a 
key pair, where the private key is used to create the signature and the 
public key is used for verification of the signature. 

Key  A key is an input to a cryptographic algorithm. Sufficient randomness of 
the key is usually a necessary condition for the security of the algorithm. 
This specification supports RSA key pairs as keys. 

Key Pair  A key that consists of a public key and (optionally) a private key. 

Passphrase  A secret string that is shared between two or more parties. A passphrase 
may be used to derive keys. 

RSA key pair  A key pair that is accepted as input by the RSA algorithm. 

3.2 Abbreviations 
CA  Certification Authority 

CSR  Certificate Signing Request (also called Certification Request) 

MAC  Message Authentication Code 

ONVIF  Open Network Video Interface Forum 

SHA  Secure Hashing Algorithm 

TLS  Transport Layer Security 

3.3 Namespace 
This document references the following namespaces: 

Prefix  Namespace URI 

env  http://www.w3.org/2003/05/soap-envelope 

tas  http://www.onvif.org/ver10/advancedsecurity/wsdl 

ter  http://www.onvif.org/ver10/error 

http://www.w3.org/2003/05/soap-envelope


ONVIF™ – 7 –  Advanced Security Service 
Ver. 1.1 

 
tt  http://www.onvif.org/ver10/schema 

xs  http://www.w3.org/2001/XMLSchema 



ONVIF™ – 8 –  Advanced Security Service 
Ver. 1.1 

 
4 Overview 

This specification covers the following advanced security features: 

• Keys and certificates management interface (keystore) 

• TLS server configuration interface 

Basic security features such as user authentication based on WS UsernameToken and HTTP 
Authentication as well as a default access policy are specified in the [ONVIF Core 
Specification] as part of the device management service. 

WSDL for the Advanced Security service is specified in 
<http://www.onvif.org/ver10/advancedsecurity/wsdl/advancedsecurity.wsdl>. 

All sections in this specification are normative unless explicitly marked as informative. 

5 Advanced Security Service 

5.1 General Structure 
This section covers the security features 

• Keystore 

• TLS server 

The design and data model of the ONVIF Advanced Security Service is reflected in Figure 1. 

 

Figure 1 ONVIF Advanced Security Service [UML] Class Diagram 
 

5.2 Keystore 

5.2.1 Elements of the Keystore 
The keystore security feature handles the storage and management of passphrases, keys, 
and certificates on an ONVIF device. 

The keystore specified in this document supports passphrases, keys, key pairs, which are a 
particular type of key, RSA key pairs, which are a particular type of key pairs, certificates, and 
certification paths. 

http://www.onvif.org/ver10/advancedsecurity/wsdl/advancedsecurity.wsdl


ONVIF™ – 9 –  Advanced Security Service 
Ver. 1.1 

 
The boolean attribute externallyGenerated of a key shall be true if and only if the key was 
generated outside the device. 

The boolean attribute securelyStored of a key shall be true if and only if the key is stored in a 
specially protected hardware component (e.g., a trusted platform module) inside the device. 

5.2.2 Unique Identifiers 
An ID is used to uniquely identify objects of a particular type in the keystore on a device, i.e., 
no two objects of the same type shall have the same ID at any time. 

Passphrases in the keystore shall be uniquely identified by passphrase IDs, keys shall be 
uniquely identified by key IDs, certificates shall be uniquely identified by certificate IDs, and 
certification paths in the keystore shall be uniquely identified by certification path IDs. 

It shall be noted that while IDs within a specific type shall be unique, no requirement exists for 
the uniqueness of IDs across different types. For example, there may be a key and a 
certificate in the keystore that share the same ID. 

Devices may assign the ID of a deleted identified object to another, subsequently generated 
object. However, devices should avoid re-using IDs as long as possible to avoid race 
conditions on the client side. 

A client may supply an alias for passphrases, keys, certificates, and certification paths upon 
creation, e.g.,  to facilitate recognizing the created object at a later time. The device shall 
treat such aliases as unstructured data. 

5.2.3 Uniqueness of Objects in the Keystore 
A device shall allow multiple copies of the same passphrase to be present in the keystore 
under different IDs simultaneously. 

A device shall allow multiple copies of the same certificate and multiple copies of the same 
certification path to be present in the keystore under different IDs, respectively. 

A device shall not allow multiple copies of the same key to be present in the keystore 
simultaneously. 

5.2.4 Referential Integrity 
The keystore design relies on associations between 

• Keys, especially key pairs, and certificates 

• Public keys and private keys in key pairs 

• Certificates and certification paths 

• Keys and security features 

• Certificates and security features 

A device shall enforce the following referential integrity rules for delete operations: 

• A key shall not be deleted if it is referenced by a certificate or a security feature. 

• A certificate shall not be deleted if it is referenced by a certification path or a security 
feature. 

• A certification path shall not be deleted if it is referenced by a security feature. 

This integrity rule may be enforced by the following mechanism. Reference counters are 
maintained for keys, certificates and certification paths. Each time a reference to an object of 
these types is added, e.g., by associating a certificate to a key pair or assigning a key pair or 
certificate to a security feature, the reference counter of the object is incremented. Conversely, 



ONVIF™ – 10 –  Advanced Security Service 
Ver. 1.1 

 
if a reference to an object is deleted, the reference counter of the referenced object is 
decremented. Deleting a key, certificate, or certification path is only permitted if the 
corresponding reference counter is equal to zero. 

A device shall enforce the following referential integrity rules for update operations: 

• A key shall not be updated if it is referenced by a certificate or a security feature. 
However, a private key may be added to an existing key pair if the private key 
matches the public key in the key pair. If a private key is about to be added to a key 
pair that already contains the private key to be added, the adding operation shall have 
no effect. 

• A certificate shall not be updated if it is referenced by a certification path or a security 
feature. 

This specification omits APIs for modifying keys or certificates. If a key or certificate is to be 
updated, it has to be deleted and newly generated with the updated information. If other API 
exists that allows for modification of keys or certificates, special care shall be taken in order 
not to break the referential integrity rule. 

A device shall enforce the following invariants: 

• The private key and the public key in an asymmetric key pair in the keystore shall 
always match, i.e., the asymmetric operation under the public key is the inverse of the 
corresponding operation under the private key. 

• The public key in a certificate in the keystore and the public key in an associated key 
pair in the keystore shall always be equal for all associated key pairs. 

5.2.5 Key Status 
A key in the keystore is always in exactly one of the following states: 

• ok (The key is ready to be used) 

• generating (The key is being generated and not yet ready for use) 

• corrupt (The key is corrupt and shall not be used, e.g., because it was not properly 
generated or a hardware fault corrupted a key that was ready to be used) 

5.2.6 Keystore Operations 

5.2.6.1 Passphrase Management 

5.2.6.1.1 Upload Passphrase   
This operation uploads a passphrase to the keystore of the device. 

Passphrases are uniquely identified using passphrase IDs. The device shall generate a new 
passphrase ID for the uploaded passphrase. 

If the command was successful, the device shall return the ID of the uploaded passphrase. 

If the device does not have enough storage capacity for storing the passphrase to be 
uploaded, the device shall produce a maximum number of passphrases reached fault and 
shall not upload the supplied passphrase. 

If the device cannot process the passphrase to be uploaded, the device shall produce a 
BadPassphrase fault and shall not upload a passphrase. 



ONVIF™ – 11 –  Advanced Security Service 
Ver. 1.1 

 
Table 1: UploadPassphrase command 

UploadPassphrase Access Class: WRITE_SYSTEM 

Message name Description 

UploadPassphraseRequest This message contains a request for the device to 
upload a passphrase to the keystore. 
 
xs:string Passphrase [1][1] 
xs:string PassphraseAlias [0][1] 
 

UploadPassphraseResponse This message contains the ID of the successfully 
uploaded passphrase. 
 
tas:PassphraseID PassphraseID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfPassphrasesReached 

The device does not have enough storage space to 
store the passphrase to be uploaded. 

env:Sender 
ter:InvalidArgVal 
ter:BadPassphrase 

The supplied passphrase cannot be processed by the 
device. 

 

5.2.6.1.2 Get All Passphrases 
This operation returns information about all passphrases that are stored in the keystore of the 
device. 

This operation may be used, e.g., if a client lost track of which passphrases are present on 
the device. 

If no passphrase is stored on the device, the device shall return an empty list. 

Table 2: GetAllPassphrases command 

GetAllPassphrases Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetAllPassphrasesRequest This message contains a request for the device to return information 
about all passphrases in the keystore. 
 
This is an empty message. 
 

GetAllPassphrasesResponse This message contains information about all passphrases in the 
keystore. 
 
tas:PassphraseAttribute PassphraseAttribute [0][unbounded] 
 

Fault codes Description 

 No command-specific fault codes. 

 

5.2.6.1.3 Delete Passphrase 
This operation deletes a passphrase from the keystore of the device. 



ONVIF™ – 12 –  Advanced Security Service 
Ver. 1.1 

 
Passphrases are uniquely identified using passphrase IDs. If no passphrase is stored under 
the requested passphrase ID in the keystore, a device shall produce an invalid passphrase ID 
fault. If there is a passphrase under the requested passphrase ID stored in the keystore and 
the passphrase could not be deleted, a device shall produce a passphrase deletion failed fault. 

After a passphrase is successfully deleted, the device may assign its former ID to other 
passphrases. 

Table 3: DeletePassphrase command 

DeletePassphrase Access Class: UNRECOVERABLE 

Message name Description 

DeletePassphraseRequest This message contains a request for the device to delete a passphrase 
from the keystore. 
 
tas:PassphraseID PassphraseID [1][1] 
 

DeletePassphraseResponse This is an empty message. 

Fault codes Description 

env:Receiver 
ter:Action 
ter:PassphraseDeletionFailed 

Deleting the passphrase with the requested PassphraseID failed. 

env:Sender 
ter:InvalidArgVal 
ter:PassphraseID 

No passphrase is stored under the requested PassphraseID. 

 

5.2.6.2 Key Management 

5.2.6.2.1 Create RSA Key Pair 
This operation triggers the asynchronous generation of an RSA key pair of a particular 
keylength (specified as the number of bits) as specified in [RFC 3447], with a suitable key 
generation mechanism on the device. Keys, especially RSA key pairs, are uniquely identified 
using key IDs.  

If the device does not have not enough storage capacity for storing the key pair to be created, 
the maximum number of keys reached fault shall be produced and no key pair shall be 
generated. Otherwise, the operation generates a keyID for the new key and associates the 
generating status to it. Immediately after key generation has started, the device shall return 
the keyID to the client and continue to generate the key pair. The client may query the device 
with the GetKeyStatus operation (see Sect.5.2.6.1.2) whether the generation has finished. 
The client may also subscribe to Key Status events (see Sect. 5.5.1) to be notified about key 
status changes. 

The device also returns a best-effort estimate of how much time it requires to create the key 
pair.1 A client may use this information as an indication how long to wait before querying the 
device whether key generation is completed. 

After the key has been successfully created, the device shall assign it the ok status. If the key 
generation fails, the device shall assign the key the corrupt status. 

                                                 
1Implementors may estimate the key generation time for a fixed key length as the average 
elapsed time of a number of key generation operations for this key length. 
 



ONVIF™ – 13 –  Advanced Security Service 
Ver. 1.1 

 
Table 4:CreateRSAKeyPair command 

CreateRSAKeyPair Access Class: WRITE_SYSTEM 

Message name Description 

CreateRSAKeyPairRequest This message contains a request for the device to generate 
an RSA key pair (i.e., a public and a private key). 
 
 
xs:nonNegativeInteger KeyLength [1][1] 
xs:string Alias [0][1] 
 

CreateRSAKeyPairResponse This message contains the key ID of the key pair being 
generated. 
 
tas:KeyID KeyID [1][1] 
xs:duration EstimatedCreationTime[1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfKeysReached 

The device does not have enough storage space to store the 
key pair to be generated. 

env:Sender 
ter:InvalidArgVal 
ter:KeyLength 

The specified key length is not supported by the device. 

5.2.6.2.2 Upload Key Pair in PKCS#8 
This operation uploads a key pair in a PKCS#8 data structure as specified in [RFC 5958, RFC 
5959].  

If an encryption passphrase ID is supplied in the request, the device shall assume that the 
KeyPair parameter contains an EncryptedPrivateKeyInfo ASN.1 structure that is encrypted 
under the passphrase in the keystore that corresponds to the supplied ID, where the 
EncryptedPrivateKeyInfo structure contains both the private key and the corresponding public 
key. If no encryption passphrase ID is supplied, the device shall assume that the KeyPair 
parameter contains a OneAsymmetricKey ASN.1 structure which contains both the private key 
and the corresponding public key. 

If the supplied key pair cannot be processed by the device, the device shall produce an 
UnsupportedPublicKeyAlgorithm fault and shall not store the uploaded key pair in the 
keystore. 

Key pairs are uniquely identified using key IDs. If a key pair exists in the keystore with the 
public key equal to the public key in the request and this key pair does not contain a private 
key, the device shall add the supplied private key to the existing key pair and return the ID of 
this key pair. 

If a key pair exists in the keystore with the public key equal to the public key in the request 
and this key pair contains a private key, the device shall leave the key pair unchanged and 
return the ID of this key pair. 

If the existing key pair does not have status ok, the device shall produce an InvalidKeyStatus 
fault and shall not modify the existing key pair. 

If no key pair exists in the keystore with the public key equal to the public key in the request, 
the device shall generate a new key pair with the supplied private key and the supplied public 
key, status ok and the externally generated attribute set to true. Furthermore, the device shall 
return the ID of this key pair. 



ONVIF™ – 14 –  Advanced Security Service 
Ver. 1.1 

 
If a new key pair is created, the device shall assign the supplied alias to it. Otherwise, the 
device shall ignore an eventually supplied alias. 

If decryption of the EncryptedPrivateKeyInfo failed, the device shall produce a 
DecryptionFailed fault and shall not store the uploaded key pair in the keystore. 

If the device does not have not enough storage capacity for storing the key pair that 
eventually has to be created, the device shall generate a maximum number of keys reached 
fault. Furthermore the device shall not generate a key pair. 

If no passphrase exists under the ID specified by EncryptionPassphraseID, the device shall 
produce an invalid passphrase ID fault and shall not store the uploaded key pair in the 
keystore. 

If the supplied PKCS#8 data structure cannot be processed by the device, the device shall 
produce a BadPKCS8File fault and shall not store the uploaded key pair in the keystore. 

If the public key in the uploaded key pair does not match the uploaded private key, the device 
shall produce a PublicPrivateKeyMismatch fault and shall not store the uploaded key pair in 
the keystore. 

If the command was successful, the device shall return the ID of the key pair in the keystore 
that contains the supplied public and private key. 

Table 5: UploadKeyPairInPKCS8 command 

UploadKeyPairInPKCS8 Access Class: WRITE_SYSTEM 

Message name Description 

UploadKeyPairInPKCS8Request This message contains a request for the device to upload a 
DER-encoded key pair in a PKCS#8 data structure. 
 
tas:Base64DERencodedASN1Value KeyPair [1][1] 
xs:string Alias [0][1] 
tas:PassphraseID EncryptionPassphraseID [0][1] 
 

UploadKeyPairInPKCS8Response This message contains the ID of the successfully uploaded 
key pair. 
 
tas:KeyID KeyID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfKeysReached 

The device does not have enough storage space to store the 
key pair that has to be generated. 

env:Sender 
ter:InvalidArgVal 
ter:PassphraseID 

No passphrase is stored under the requested PassphraseID. 

env:Sender 
ter:InvalidArgVal 
ter:DecryptionFailed 

The given data could not be decrypted. 

env:Sender 
ter:InvalidArgVal 
ter:UnsupportedPublicKeyAlgorithm 

The public key algorithm of the supplied key pair is not 
supported by the device. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyStatus 

The key with the requested KeyID has an inappropriate status. 

env:Sender 
ter:InvalidArgVal 
ter:BadPKCS8File 

The PKCS#8 data structure cannot be processed by the 
device. 



ONVIF™ – 15 –  Advanced Security Service 
Ver. 1.1 

 
env:Sender 
ter:InvalidArgVal 
ter:PublicPrivateKeyMismatch 

The supplied private key does not match the supplied public 
key. 

 

5.2.6.2.3 Get Key Status 
This operation returns the status of a key as defined in Sect. 5.2.5. 

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in 
the keystore, an InvalidKeyID fault is produced. Otherwise, the status of the key is returned. 

Table 6: GetKeyStatus command 

GetKeyStatus Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetKeyStatusRequest This message contains a request for the device to return the status of a key 
in the keystore. 
 
tas:KeyID KeyID[1][1] 
 

GetKeyStatusResponse This message contains the status of the requested KeyID. 
 
tas:KeyStatus KeyStatus[1][1] 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:KeyID 

No key is stored under the requested KeyID. 

 

5.2.6.2.4 Get Private Key Status 
This operation returns whether a key pair contains a private key. 

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in 
the keystore, an invalid key ID fault shall be produced. If a key is stored under the requested 
key ID in the keystore, but this key is not a key pair, an invalid key type fault shall be 
produced. 

Otherwise, this operation returns true if the key pair identified by the key ID contains a private 
key, and false otherwise. 

Table 7: GetPrivateKeyStatus command 

GetPrivateKeyStatus Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetPrivateKeyStatusRequest This message contains a request for the device to return whether a 
key pair contains a private key. 
 
tas:KeyID KeyID[1][1] 
 

GetPrivateKeyStatusResponse This message contains the status for the requested KeyID. 
 
xs:boolean hasPrivateKey[1][1] 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 

No key is stored under the requested KeyID. 



ONVIF™ – 16 –  Advanced Security Service 
Ver. 1.1 

 
ter:KeyID 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyType 

The key stored under the requested KeyID does not identify a 
key pair. 

 

5.2.6.2.5 Get All Keys 
This operation returns information about all keys that are stored in the device’s keystore. 

This operation may be used, e.g., if a client lost track of which keys are present on the device. 

If no key is stored on the device, an empty list is returned. 

Table 8: GetAllKeys command 

GetAllKeys Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetAllKeysRequest This message contains a request for the device to return information 
about all keys in the keystore. 
 
This is an empty message. 
 

GetAllKeysResponse This message contains information about all keys in the keystore. 
 
tas:KeyAttribute KeyAttribute [0][unbounded] 
 

Fault codes Description 

 No command-specific fault codes. 

 

5.2.6.2.6 Delete Key 
This operation deletes a key from the device’s keystore. 

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in 
the keystore, a device shall produce an InvalidArgVal fault. If a reference exists for the 
specified key, a device shall produce the corresponding fault and shall not delete the key. If 
there is a key under the requested key ID stored in the keystore and the key could not be 
deleted, a device shall produce a KeyDeletion fault. If the key has the status generating, a 
device shall abort the generation of the key and delete from the keystore all data generated 
for this key. 

After a key is successfully deleted, the device may assign its former ID to other keys. 

Table 9: DeleteKey command 

DeleteKey Access Class: UNRECOVERABLE 

Message name Description 

DeleteKeyRequest This message contains a request for the device to delete a key from 
the keystore. 
 
tas:KeyID KeyID[1][1] 
 

DeleteKeyResponse This is an empty message. 



ONVIF™ – 17 –  Advanced Security Service 
Ver. 1.1 

 
Fault codes Description 

env:Receiver 
ter:Action 
ter:KeyDeletionFailed 

Deleting the key with the requested KeyID failed. 

env:Sender 
ter:InvalidArgVal 
ter:KeyID 

No key is stored under the requested KeyID. 

env:Sender 
ter:InvalidArgVal 
ter:ReferenceExists 

A reference exists for the specified key. 

 

5.2.6.3 Certificate Management 

5.2.6.3.1 Create PKCS#10 Certification Request 
This operation generates a DER-encoded PKCS#10 v1.7 certification request (sometimes 
also called certificate signing request or CSR) as specified in [RFC 2986] for a public key on 
the device.  

The key pair that contains the public key for which a certification request shall be produced is 
specified by its key ID. If no key is stored under the requested KeyID or the key specified by 
the requested KeyID is not an asymmetric key pair, an invalid key ID fault shall be produced 
and no CSR shall be generated. 

The subject parameter describes the entity that the public key belongs to. Additional attributes 
can be included in the attribute parameter. 

Distinguished name attribute values shall be supplied either in UTF-8 or in hexadecimal form 
as specified in RFC 4514. 

If the distinguished name attribute value is supplied in hexadecimal form, the device shall 
encode the attribute in the format given in the hexadecimal format. 

If the distinguished name attribute value is supplied in UTF-8 and the attribute value has a 
uniquely defined encoding (e.g., CountryName is defined as PrintableString), the device shall 
encode the attribute as the defined encoding. Otherwise, the device shall encode the attribute 
value as UTF-8. 

The signature algorithm parameter determines which signature algorithm shall be used for 
signing the certification request with the public key specified by the key ID parameter. A 
device that supports this command shall as minimum support the sha1WithRSAEncryption 
signature algorithm as specified in [RFC 3279] and the sha256WithRSAEncryption signature 
algorithm as specified in [RFC 4055]. If the specified signature algorithm is not supported by 
the device, an UnsupportedSignatureAlgorithm fault shall be produced and no CSR shall be 
generated. If the public key identified by the requested Key ID is an invalid input to the 
specified signature algorithm, a KeySignatureAlgorithmMismatch fault shall be produced and 
no CSR shall be generated. If the specified subject is invalid or incomplete, a Subject invalid 
fault shall be produced and no CSR shall be created. If an attribute is invalid or incomplete, 
an Attribute invalid fault shall be produced and no CSR shall be generated. 

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and 
no CSR shall be generated. 



ONVIF™ – 18 –  Advanced Security Service 
Ver. 1.1 

 
Table 10: CreatePKCS10CSR command 

CreatePKCS10CSR Access Class: READ_SYSTEM 

Message name Description 

CreatePKCS10CSRRequest This message contains a request for the device to create a 
PKCS#10 certification request for one of its public keys. 
 
tas:DistinguishedName Subject [1][1] 
tas:KeyID KeyID[1][1] 
tas:CSRAttribute Attribute [0][unbounded] 
tas:AlgorithmIdentifier SignatureAlgorithm[1][1] 
 

CreatePKCS10CSRResponse This message contains the DER encoded PKCS#10 
certification request. 
 
tas:Base64DERencodedASN1Value PKCS10CSR [1][1] 

Fault codes Description 

env:Receiver 
ter:Action 
ter:CSRCreationFailed 

The generation of the PKCS#10 certification request failed. 

env:Sender 
  ter:InvalidArgVal 
ter:KeyID 

No key is stored under the requested KeyID or the key 
specified by the requested Key ID is not an asymmetric key 
pair. 

env:Sender 
  ter: InvalidArgVal 
ter:UnsupportedSignatureAlgorithm 

The specified signature algorithm is not supported by the 
device. 

env:Sender 
ter: 
InvalidArgValter:KeySignatureAlgorith
mMismatch 

The specified public key is an invalid input to the specified 
signature algorithm. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyStatus 

The key with the requested KeyID has an inappropriate status. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidSubject 

The specified subject is invalid or incomplete. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidAttribute 

The specified attribute is invalid or incomplete. 

 

5.2.6.3.2 Create Self-Signed Certificate  
This operation generates for a public key on the device a self-signed X.509 certificate that 
complies to [RFC 5280].  

The X509Version parameter specifies the version of X.509 that the generated certificate shall 
comply to. A device that supports this command shall support the generation of X.509v3 
certificates as specified in [RFC 5280] and may additionally be able to handle other X.509 
certificate formats as indicated by the X.509Versions capability. If no X509Version is specified 
in the request, the device shall produce an X.509v3 certificate. 

The key pair that contains the public key for which a self-signed certificate shall be produced 
is specified by its key pair ID. The subject parameter describes the entity that the public key 
belongs to. 

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and 
no certificate shall be generated. 



ONVIF™ – 19 –  Advanced Security Service 
Ver. 1.1 

 
If the specified subject is invalid or incomplete, a Subject invalid fault shall be produced and 
no certificate shall be created. 

The notValidBefore parameter specifies at which point in time the validity period of the 
generated certificate shall begin. If this parameter is not specified in the request, the device 
shall use its current time or a time before its current time as starting point of the validity 
period. The notValidAfter parameter specifies at which point in time the validity period of the 
generated certificate shall end. If this parameter is not specified in the request, the device 
shall assign the GeneralizedTime value of 99991231235959Z as specified in [RFC 5280] to 
the notValidAfter parameter. If the notValidBefore parameter is invalid, an invalid DateTime 
fault shall be produced and no certificate shall be generated. If the notValidAfter parameter is 
invalid, an invalid DateTime fault shall be produced and no certificate shall be generated. 

The signature algorithm parameter determines which signature algorithm shall be used for 
signing the certification request with the public key specified by the key ID parameter. A 
device that supports this command shall as minimum support the sha1WithRSAEncryption 
signature algorithm as specified in [RFC 3279] and the sha256WithRSAEncryption signature 
algorithm as specified in [RFC 4055]. 

The Extensions parameter specifies potential X509v3 extensions that shall be contained in 
the certificate. A device that supports this command shall support the extensions that are 
defined in [RFC5280, Sect. 4.2] as mandatory for CAs that issue self-signed certificates. 

Distinguished name attribute values shall be supplied either in UTF-8 or in hexadecimal form 
as specified in RFC 4514. 

If the distinguished name attribute value is supplied in hexadecimal form, the device shall 
encode the attribute inthe format given in the hexadecimal format. 

If the distinguished name attribute value is supplied in UTF-8 and the attribute value has a 
uniquely defined encoding (e.g., CountryName is defined as PrintableString), the device shall 
encode the attribute as the defined encoding. Otherwise, the device shall encode the attribute 
value as UTF-8. 

[RFC 5280, Sect. 4.1.2.2] mandates that the certificate serial numbers be unique for each 
certificate issued by a given issuer (a CA). Since the subject is equal to the issuer in a self-
signed certificate, the serial number shall be unique for each self-signed certificate that the 
device issues for a given subject. 

The generated certificate shall not contain a unique identifier as specified in [RFC 5280], Sect. 
4.1.2.8. The device shall not mark the generated certificate as trusted. 

Certificates are uniquely identified using certificate IDs. If the command was successful, the 
device generates a new ID for the generated certificate and returns this ID. 

If the device does not have not enough storage capacity for storing the certificate to be 
created, the maximum number of certificates reached fault shall be produced and no 
certificate shall be generated. 



ONVIF™ – 20 –  Advanced Security Service 
Ver. 1.1 

 
Table 11: CreateSelfSignedCertificate command 

CreateSelfSignedCertificate Access Class: WRITE_SYSTEM 

Message name Description 

CreateSelfSignedCertificateRequest This message contains a request for the device to 
create for a public key on the device a self-signed, 
RFC 5280 compliant certificate. 
 
xs:positive X509Version [0][1] 
tas:DistinguishedName Subject [1][1] 
tas:KeyID KeyID[1][1] 
xs:string Alias [0][1] 
xs:dateTime notValidBefore [0][1] 
xs:dateTime notValidAfter[0][1] 
tas:AlgorithmIdentifier SignatureAlgorithm[1][1] 
tas:X509v3Extension Extension [0][unbounded] 
 

CreateSelfSignedCertificateResponse This message contains the certificate ID of the 
successfully created certificate. 
 
tas:CertificateID CertificateID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:CertificateCreationFailed 

The generation of the self-signed certificate failed. 

env:Receiver 
ter:Action 
ter:MaximumNumberOfCertificatesReached 

The device does not have enough storage space to 
store the certificate to be created. 

env:Sender 
  ter:InvalidArgVal 
    ter:UnsupportedX509Version 

The specified X.509 version is not supported by the 
device. 

env:Sender 
  ter:InvalidArgVal 
ter:KeyID 

No key is stored under the requested KeyID or the key 
specified by the requested Key ID is not an 
asymmetric key pair. 

env:Sender 
  ter: InvalidArgVal 
ter:UnsupportedSignatureAlgorithm 

The specified signature algorithm is not supported by 
the device. 

env:Sender 
ter: 
InvalidArgValter:KeySignatureAlgorithmMisma
tch 

The specified public key is an invalid input to the 
specified signature algorithm. 

env:Sender 
ter: InvalidArgVal 
ter:X509VersionExtensionsMismatch 

The request contains extensions which are not 
supported by the X509Versionin the request. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyStatus 

The key with the requested KeyID has an 
inappropriate status. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidSubject 

The specified subject is invalid or incomplete. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidDateTime 

A specified dateTime is invalid. 

 



ONVIF™ – 21 –  Advanced Security Service 
Ver. 1.1 

 
5.2.6.3.3 Upload Certificate 
This operation uploads an X.509 certificate as specified by [RFC 5280]in DER encoding and 
the public key in the certificate to a device’s keystore. A device that supports this command 
shall be able to handle X.509v3 certificates as specified in [RFC 5280] and may additionally 
be able to handle other X.509 certificate formats as indicated by the X.509Versions capability. 
A device that supports this command shall as minimum support the sha1WithRSAEncryption 
signature algorithm as specified in [RFC 3279] and the sha256WithRSAEncryption signature 
algorithm as specified in [RFC 4055]. 

Certificates are uniquely identified using certificate IDs, and key pairs are uniquely identified 
using key IDs. The device shall generate a new certificate ID for the uploaded certificate. 

Certain certificate usages, e.g. TLS server authentication, require the private key that 
corresponds to the public key in the certificate to be present in the keystore. In such cases, 
the client may indicate that it expects the device to produce a fault if the matching private key 
for the uploaded certificate is not present in the keystore by setting the PrivateKeyRequired 
argument in the upload request to true. 

The uploaded certificate has to be linked to a key pair in the keystore. 

If no private key is required for the public key in the certificate and a key pair exists in the 
keystore with a public key equal to the public key in the certificate, the uploaded certificate is 
linked to the key pair identified by the supplied key ID by adding a reference from the 
certificate to the key pair. 

If no private key is required for the public key in the certificate and no key pair exists with the 
public key equal to the public key in the certificate, a new key pair with status ok is created 
with the public key from the certificate, and this key pair is linked to the uploaded certificate 
by adding a reference from the certificate to the key pair. 

If a private key is required for the public key in the certificate, and a key pair exists in the 
keystore with a private key that matches the public key in the certificate, the uploaded 
certificate is linked to this key pair by adding a reference from the certificate to the key pair. If 
a private key is required for the public key and no such keypair exists in the keystore, the 
NoMatchingPrivateKey fault shall be produced and the certificate shall not be stored in the 
keystore. 

The device shall assign the supplied Alias to the uploaded certificate. 

If a new key pair is generated, the device shall assign the supplied KeyAlias to it. Otherwise, 
the device shall ignore an eventually supplied KeyAlias. 

How the link between the uploaded certificate and a key pair is established is illustrated in 
Figure 2. 



ONVIF™ – 22 –  Advanced Security Service 
Ver. 1.1 

 

 

Figure 2 Link establishment between certificate and key pair for Upload Certificate 
If the key pair that the certificate shall be linked to does not have status ok, an InvalidKeyID 
fault is produced, and the uploaded certificate is not stored in the keystore. 

If the signature algorithm that the signature of the supplied certificate is based on is not 
supported by the device, the device shall generate an UnsupportedSignatureAlgorithm fault 
and shall not store the uploaded certificate nor the contained public key in the keystore. 

If the device cannot process the uploaded certificate, a BadCertificate fault is produced and 
neither the uploaded certificate nor the public key are stored in the device’s keystore. The 
BadCertificate fault shall not be produced based on the mere fact that the device’s current 
time lies outside the interval defined by the notBefore and notAfter fields as specified by [RFC 
5280], Sect. 4.1. 

The device shall not mark the uploaded certificate as trusted. 

If the device does not have not enough storage capacity for storing the certificate to be 
uploaded, the maximum number of certificates reached fault shall be produced and no 
certificate shall be uploaded. 

If the device does not have not enough storage capacity for storing the key pair that 
eventually has to be created, the device shall generate a maximum number of keys reached 
fault. Furthermore the device shall not generate a key pair and no certificate shall be stored. 

If the command was successful, the device returns the ID of the uploaded certificate and the 
ID of the key pair that contains the public key in the certificate. 



ONVIF™ – 23 –  Advanced Security Service 
Ver. 1.1 

 
Table 12: Upload Certificate command 

UploadCertificate Access Class: WRITE_SYSTEM 

Message name Description 

UploadCertificateRequest This message contains a request for the device to 
upload a DER-encoded certificate to the keystore. 
 
tas:Base64DERencodedASN1Value Certificate [1][1] 
xs:string Alias [0][1] 
xs:string KeyAlias [0][1] 
xs:boolean PrivateKeyRequired [0][1] 
 

UploadCertificateResponse This message contains the ID of the successfully 
uploaded certificate and the ID of the key pair that 
contains the public key in the certificate. 
 
tas:CertificateID CertificateID [1][1] 
tas:KeyID KeyID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfCertificatesReached 

The device does not have enough storage space to 
store the certificate to be uploaded. 

env:Receiver 
ter:Action 
ter:MaximumNumberOfKeysReached 

The device does not have enough storage space to 
store the key pair that has to be generated. 

env:Sender 
ter:InvalidArgVal 
ter:BadCertificate 

The supplied certificate file cannot be processed by 
the device. 

env:Receiver 
ter:Action 
ter:NoMatchingPrivateKey 

The keystore does not contain a key pair with a private 
key that matches the public key in the uploaded 
certificate. 

env:Sender 
ter:InvalidArgVal 
ter:UnsupportedPublicKeyAlgorithm 

The public key algorithm of the public key in the 
certificate is not supported by the device. 

env:Sender 
ter:InvalidArgVal 
ter:UnsupportedSignatureAlgorithm 

The signature algorithm that the signature of the 
supplied certificate is based on is not supported by the 
device. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyStatus 

The key with the requested KeyID has an 
inappropriate status. 

 

5.2.6.3.4 Upload Certificate with Private Key in PKCS#12 
This operation uploads a certification path consisting of X.509 certificates as specified by 
[RFC 5280] in DER encoding along with a private key to a device’s keystore. Certificates and 
private key are supplied in the form of a PKCS#12 file as specified in [PKCS#12]. 

The device shall support PKCS#12 files that contain the following safe bags: 

• one or more instances of CertBag [PKCS#12, Sect. 4.2.3] 

• either exactly one instance of KeyBag [PKCS#12, Sect. 4.3.1] or exactly one instance 
of PKCS8ShroudedKeyBag [PKCS#12, Sect. 4.2.2]. 

If the IgnoreAdditionalCertificates parameter has the value true, the device shall behave as if 
the client had supplied only the first CertBag in the sequence of CertBag instances. 



ONVIF™ – 24 –  Advanced Security Service 
Ver. 1.1 

 
The device shall support PKCS#12 passphrase integrity mode for integrity protection of the 
PKCS#12 PFX as specified in [PKCS#12, Sect. 4]. The device shall support 
PKCS8ShroudedKeyBags that are encrypted with the same passphrase as the CertBag 
instances. 

If an integrity passphrase ID is supplied, the device shall use the corresponding passphrase 
in the keystore to check the integrity of the supplied PKCS#12 PFX. If an integrity passphrase 
ID is supplied, but the supplied PKCS#12 PFX has no integrity protection, the device shall 
produce a BadPKCS12File fault and shall not store the uploaded certificates nor the uploaded 
key pair in the keystore. 

If an encryption passphrase ID is supplied, the device shall use the corresponding 
passphrase in the keystore to decrypt the PKCS8ShroudedKeyBag and the CertBag instances. 

If an EncryptionPassphraseID is supplied, but a CertBag is not encrypted, the device shall 
ignore the supplied EncryptionPassphraseID when processing this CertBag. If an 
EncryptionPassphraseID is supplied, but a KeyBag is provided instead of a 
PKCS8ShroudedKeyBag, the device shall ignore the supplied EncryptionPassphraseID when 
processing the KeyBag. 

If decryption of either the PKCS8ShroudedKeyBag or an encrypted CertBag failed, the device 
shall produce a DecryptionFailed fault and shall not store the uploaded certificates nor key 
pair in the keystore. 

If the signature algorithm of a supplied certificate is not supported by the device, the device 
shall produce an UnsupportedSignatureAlgorithm fault and shall not upload a certificate nor 
key pair. 

If the supplied key pair cannot be processed by the device, the device shall produce an 
UnsupportedPublicKeyAlgorithm fault and shall not store the uploaded key pair nor the 
uploaded certificates in the keystore. 

Certificates are uniquely identified using certificate IDs. The device shall store the uploaded 
certificates in the keystore and generate a new certificate ID for each of the uploaded 
certificates. 

Certification paths are uniquely identified using certification path IDs. The device shall create 
a certification path from the uploaded certificates. In this certification path, the certificates 
shall appear in the same order as in the PKCS#12 file. The device shall generate a new 
certification path ID for the created certification path and assign the eventually supplied 
CertificationPathAlias to the created certification path. 

The signature of each certificate in the sequence of uploaded certificates except for the last 
one shall be verifiable with the public key contained in the next certificate in the sequence. If 
there is a certificate in the request other than the last certificate for which the signature 
cannot be verified with the public key in the next certificate, the device shall produce an 
invalid certification path fault and shall not store the uploaded certificates nor uploaded 
private key in the keystore. 

If the device cannot process one of the uploaded certificates, it shall produce a BadCertificate 
fault and neither store the uploaded certificates nor private key in the keystore. The 
BadCertificate fault shall not be produced based on the mere fact that the device’s current 
time lies outside the interval defined by the notBefore and notAfter fields as specified by [RFC 
5280], Sect. 4.1. 

The device shall not mark the uploaded certificates as trusted. 

The uploaded certificates have to be linked to key pairs in the keystore. Key pairs are 
uniquely identified using key IDs. 

If a key pair exists in the keystore with the public key equal to the public key in a certificate in 
the request, the device shall link the uploaded certificate to the key pair in the keystore by 
adding a reference from the certificate to the key pair. If the key pair in the keystore does not 



ONVIF™ – 25 –  Advanced Security Service 
Ver. 1.1 

 
contain a private key and the private key contained in the KeyBag or PKCS8ShroudedKeyBag 
that matches the public key in the key pair, the device shall add the private key contained in 
the KeyBag or PKCS8ShroudedKeyBag to the key pair. 

If no key pair exists in the keystore with the public key equal to the public key in a certificate 
in the request, the device shall create a new key pair with status ok, externally generated 
attribute set to true, and the public and private keys from the request, and shall link this key 
pair to the uploaded certificate by adding a reference from the certificate to the key pair. 

If a new key pair is created for the uploaded private key, the device shall assign the supplied 
KeyAlias to it. Otherwise, the device shall ignore an eventually supplied KeyAlias. 

How the link between an uploaded certificate and a key pair is established is illustrated in 
Figure 3. 

 

Figure 3 Link establishment between certificates and key pair for Upload Certificate with 
Private Key in PKCS#12 

If the key pair that a certificate shall be linked to does not have status ok, the device shall 
produce an invalid key status fault and shall not store the uploaded certificates nor the 
uploaded key pair in the keystore. 

If the device does not have not enough storage capacity for storing the certificates to be 
uploaded, the device shall produce a maximum number of certificates reached fault and shall 
not store the uploaded certificates nor the uploaded key pair in the keystore. 

If the device does not have not enough storage capacity for storing the key pair that 
eventually has to be created, the device shall generate a maximum number of keys reached 
fault. Furthermore the device shall not store a key pair and shall not store the uploaded 
certificates in the keystore. 

If the device does not have enough storage capacity for storing the certification path to be 
created, the device shall produce a maximum number of certification paths reached fault and 
shall not store the uploaded certificates nor the uploaded key pair in the keystore. 

If no passphrase exists under the ID specified by IntegrityPassphraseID, the device shall 
produce an invalid passphrase ID fault and shall not store the uploaded certificates nor the 
uploaded key pair in the keystore. 



ONVIF™ – 26 –  Advanced Security Service 
Ver. 1.1 

 
If no passphrase exists under the ID specified by EncryptionPassphraseID, the device shall 
produce an invalid passphrase ID fault and shall not store the uploaded certificates nor the 
uploaded key pair in the keystore. 

If the supplied PKCS#12 data structure cannot be processed by the device, the device shall 
produce a BadPKCS12File fault and shall not store the uploaded certificates nor the uploaded 
key pair in the keystore. 

If the public key in the first uploaded certificate does not match the uploaded private key, the 
device shall produce a PublicPrivateKeyMismatch fault and shall not store the uploaded 
certificates nor the uploaded key pair in the keystore. 

If the command was successful, the device shall return the ID of the created certification path 
and the ID of the key pair that contains the public key in the certificate. 

Table 13: UploadCertificateWithPrivateKeyInPKCS12 command 

UploadCertificateWithPrivateKeyInPKCS12 Access Class: WRITE_SYSTEM 

Message name Description 

UploadCertificateWithPrivateKeyIn
PKCS12Request 

This message contains a request for the device to upload a path 
of DER-encoded certificates to the keystore along with a private 
key in a PKCS#12 data structure. 
 
xs:Base64DERencodedASN1Value CertWithPrivateKey [1][1] 
xs:string CertificationPathAlias [0][1] 
xs:string KeyAlias [0][1] 
xs:boolean IgnoreAdditionalCertificates[0][1] 
tas:PassphraseID IntegrityPassphraseID [0][1] 
tas:PassphraseID EncryptionPassphraseID [0][1] 
 

UploadCertificateWithPrivateKeyIn
PKCS12Response 

This message contains the ID of the successfully uploaded 
certificate and the ID of the key pair that contains the public key in 
the certificate. 
 
tas:CertificationPathID CertificationPathID [1][1] 
tas:KeyID KeyID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfCertificates
Reached 

The device does not have enough storage space to store the 
certificate to be uploaded. 

env:Receiver 
ter:Action 
ter:MaximumNumberOfKeysReach
ed 

The device does not have enough storage space to store the key 
pair that has to be generated. 

env:Receiver 
ter:Action 
ter:MaximumNumberOfCertification
PathsReached 

The device does not have enough storage space to store the 
certification path to be uploaded. 

env:Sender 
ter: InvalidArgVal 
ter:PassphraseID 

No passphrase is stored under the requested PassphraseID. 

env:Sender 
ter:InvalidArgVal 
ter:DecryptionFailed 

The given data could not be decrypted. 

env:Sender 
ter:InvalidArgVal 
ter:BadCertificate 

The supplied certificate file cannot be processed by the device. 



ONVIF™ – 27 –  Advanced Security Service 
Ver. 1.1 

 
env:Sender 
ter:InvalidArgVal 
ter:UnsupportedPublicKeyAlgorith
m 

The public key algorithm of the public key in the certificate is not 
supported by the device. 

env:Sender 
ter:InvalidArgVal 
ter:UnsupportedSignatureAlgorithm 

The signature algorithm that the signature of the supplied 
certificate is based on is not supported by the device. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidKeyStatus 

The key with the requested KeyID has an inappropriate status. 

env:Sender 
ter:InvalidArgVal 
ter:BadPCKS12File 

The PKCS#12 data structure cannot be processed by the device. 

env:Sender 
ter:InvalidArgVal 
ter:PublicPrivateKeyMismatch 

The supplied private key does not match the supplied public key. 

env:Sender 
ter: InvalidArgVal 
ter:InvalidCertificationPath 

At least one certificate in the certification path is not correctly 
signed with the public key in the next certificate in the path. 

 

5.2.6.3.5 Get Certificate 
This operation returns a specific certificate from the device’s keystore. 

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the 
requested certificate ID in the keystore, an InvalidArgVal fault is produced. 

The certificate shall be returned in DER encoding. 

It shall be noted that this command does not return the private key that is associated with the 
public key in the certificate. 

Table 14: GetCertificate command 

GetCertificate Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetCertificateRequest This message contains a request for the device to return a certificate 
from the keystore. 
 
tas:CertificateID CertificateID[1][1] 
 

GetCertificateResponse This message contains in DER encoding the certificate that is stored in 
the keystore under the given ID. 
 
tas:X509Certificate Certificate[1][1] 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:CertificateID 

No certificate is stored under the requested CertificateID. 

 

5.2.6.3.6 Get All Certificates 
This operation returns all certificates that are stored in the device’s keystore. 

This operation may be used, e.g., if a client lost track of which certificates are present on the 
device. 

The certificates shall be returned in DER encoding. 



ONVIF™ – 28 –  Advanced Security Service 
Ver. 1.1 

 
If no certificate is stored in the device’s keystore, an empty list is returned. 

Table 15: GetAllCertificates command 

GetAllCertificates Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetAllCertificatesRequest This message contains a request for the device to return all certificates 
from the keystore. 
 
This is an empty message. 
 

GetAllCertificatesResponse This message contains in DER encoding all certificates in the keystore 
and their certificate IDs. 
 
tas:X509Certificate Certificate [0][unbounded] 
 

Fault codes Description 

 No command-specific fault codes. 

 

5.2.6.3.7 Delete Certificate 
This operation deletes a certificate from the device’s keystore. 

The operation shall not delete the public key that is contained in the certificate from the 
keystore. 

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the 
requested certificate ID in the keystore, an InvalidArgVal fault is produced. If there is a 
certificate under the requested certificate ID stored in the keystore and the certificate could 
not be deleted, a CertificateDeletion fault is produced. 

If a reference exists for the specified certificate, the certificate shall not be deleted and the 
corresponding fault shall be produced. 

After a certificate has been successfully deleted, the device may assign its former ID to other 
certificates. 

Table 16: DeleteCertificate command 

DeleteCertificate Access Class: UNRECOVERABLE 

Message name Description 

DeleteCertificateRequest This message contains a request for the device to delete a certificate 
from the keystore. 
 
tas:CertificateID CertificateID[1][1] 
 

DeleteCertificateResponse This is an empty message. 

Fault codes Description 

env:Receiver 
ter:Action 
ter:CertificateDeletionFailed 

Deleting the certificate with the requested CertificateID failed. 

env:Sender 
ter:InvalidArgVal 
ter:CertificateID 

No certificate is stored under the requested CertificateID. 



ONVIF™ – 29 –  Advanced Security Service 
Ver. 1.1 

 
env:Sender 
ter:InvalidArgVal 
ter:ReferenceExists 

A reference exists for the specified certificate. 

 

5.2.6.3.8 Create Certification Path 
This operation creates a sequence of certificates that may be used, e.g., for certification path 
validation or for TLS server authentication. 

Certification paths are uniquely identified using certification path IDs. Certificates are uniquely 
identified using certificate IDs. A certification path contains a sequence of certificate IDs. 

If there is a certificate ID in the sequence of supplied certificate IDs for which no certificate 
exists in the device’s keystore, the corresponding fault shall be produced and no certification 
path shall be created. 

The signature of each certificate in the certification path except for the last one shall be 
verifiable with the public key contained in the next certificate in the path. If there is a 
certificate ID in the request other than the last ID for which the corresponding certificate 
cannot be verified with the public key in the certificate identified by the next certificate ID, an 
InvalidCertificateChain fault shall be produced and no certification path shall be created. 

Table 17: CreateCertificationPath command 

CreateCertificationPath Access Class: WRITE_SYSTEM 

Message name Description 

CreateCertificationPathRequest This message contains a request for the device to 
create a certification path. 
 
tas:CertificateIDs CertificateIDs[1][1] 
xs:string Alias [0][1] 
 

CreateCertificationPathResponse This message contains the ID of the newly 
generated certification path. 
 
tas:CertificationPathID CertificationPathID [1][1] 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:MaximumNumberOfCertificationPathsReached 

The device does not have enough storage space 
to store the certification path to be created. 

env:Sender 
ter:InvalidArgVal 
ter:CertificateID 

For at least one of the supplied certificate IDs, 
there exists no certificate in the device’s keystore. 

env:Sender 
ter:InvalidArgVal 
ter:InvalidCertificationPath 

At least one certificate in the certification path is 
not correctly signed with the public key in the next 
certificate in the path. 

env:Receiver 
ter:Action 
ter:CertificationPathCreationFailed 

Creating the certification path failed. 

 

5.2.6.3.9 Get Certification Path 
This operation returns a specific certification path from the device’s keystore. 

Certification paths are uniquely identified using certification path IDs. If no certification path is 
stored under the requested ID in the keystore, an InvalidArgVal fault is produced. 



ONVIF™ – 30 –  Advanced Security Service 
Ver. 1.1 

 
Table 18: GetCertificationPath command 

GetCertificationPath Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetCertificationPathRequest This message contains a request for the device to return a certification 
path from the keystore. 
 
tas:CertificationPathID CertificationPathID [1][1] 
 

GetCertificationPathResponse This message contains the certification path that is stored under the 
given ID in the keystore. 
 
tas:CertificationPath CertificationPath[1][1] 
 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:CertificationPathID 

No certification path is stored under the requested certification 
path ID. 

 

5.2.6.3.10 Get All Certification Paths 
This operation returns the IDs of all certification paths that are stored in the device’s keystore. 

This operation may be used, e.g., if a client lost track of which certificates are present on the 
device. 

If no certification path is stored on the device, an empty list is returned. 

Table 19: GetAllCertificationPaths command 

GetAllCertificationPaths Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetAllCertificationPathsRequest This message contains a request for the device to return the IDs 
of all certification paths in the keystore. 
 
This is an empty message. 
 

GetAllCertificationPathsResponse This message contains the IDs of all certification paths in the 
keystore. 
 
tas:CertificationPathID CertificationPathID [0][unbounded] 
 

Fault codes Description 

 No command-specific fault codes. 

 

5.2.6.3.11 Delete Certification Path 
This operation deletes a certification path from the device’s keystore. 

This operation shall not delete the certificates that are referenced by the certification path. 

Certification paths are uniquely identified using certification path IDs. If no certification path is 
stored under the requested certification path ID in the keystore, an InvalidArgVal fault is 
produced. If there is a certification path under the requested certification path ID stored in the 



ONVIF™ – 31 –  Advanced Security Service 
Ver. 1.1 

 
keystore and the certification path could not be deleted, a CertificationPathDeletion fault is 
produced. 

If a reference exists for the specified certification path, the certification path shall not be 
deleted and the corresponding fault shall be produced. 

After a certification path is successfully deleted, the device may assign its former ID to other 
certification paths. 

Table 20: DeleteCertificationPath command 

DeleteCertificationPath Access Class: UNRECOVERABLE 

Message name Description 

DeleteCertificationPathRequest This message contains a request for the device to delete a 
certification path. 
 
tas:CertificationPathID CertificationPathID[1][1] 
 

DeleteCertificationPathRespons
e 

This message is empty. 
 

Fault codes Description 

env:Receiver 
ter:Action 
ter:CertificationPathDeletionFail
ed 

Deleting the certification path with the requested certification path ID 
failed. 

env:Sender 
ter:InvalidArgVal 
ter:CertificationPathID 

No certification path is stored under the requested certification path 
ID. 

env:Sender 
ter:InvalidArgVal 
ter:ReferenceExists 

A reference exists for the specified certification path. 

 

5.3 TLS Server 

5.3.1 Elements of the TLS Server 
The TLS server security feature implements a TLS server as specified in [RFC 2246] and 
subsequent specifications. 

This specification defines how to manage the associations between certification paths and the 
TLS server. All other TLS server configuration actions are outside the scope of this 
specification. In particular, enabling and disabling the TLS server on the device shall be 
performed using the device management service specified in the [ONVIF Core Specification]. 

5.3.2 TLS Server Operations 

5.3.2.1 Add Server Certificate Assignment 
This operation assigns a key pair and certificate along with a certification path (certificate 
chain) to the TLS server on the device. The TLS server shall use this information for key 
exchange during the TLS handshake, particularly for constructing server certificate messages 
as specified in [RFC 4346, RFC 2246]. 

Certification paths are identified by their certification path IDs in the keystore. The first 
certificate in the certification path shall be the TLS server certificate. 

Since each certificate has exactly one associated key pair, a reference to the key pair that is 
associated with the server certificate is not supplied explicitly. Devices shall obtain the private 



ONVIF™ – 32 –  Advanced Security Service 
Ver. 1.1 

 
key or results of operations under the private key by suitable internal interaction with the 
keystore. 

If a device chooses to perform a TLS key exchange based on the supplied certification path,  
it shall use the key pair that is associated with the server certificate for key exchange and 
transmit the certification path to TLS clients as-is, i.e., the device shall not check 
conformance of the certification path to [RFC 4346, RFC 2246]. 

In order to use the server certificate during the TLS handshake, the corresponding private key 
is required. Therefore, if the key pair that is associated with the server certificate, i.e., the first 
certificate in the certification path, does not have an associated private key, the NoPrivateKey 
fault is produced and the certification path is not associated with the TLS server. 

A TLS server may present different certification paths to different clients during the TLS 
handshake instead of presenting the same certification path to all clients. Therefore more 
than one certification path may be assigned to the TLS server. If the maximum number of 
certification paths that may be assigned to the TLS server simultaneously is reached, the 
device shall generate a MaximumNumberOfTLSCertificationPathsReached fault and the 
requested certification path shall not be assigned to the TLS server. 

If the certification path identified by the supplied certification path ID is already assigned to 
the TLS server, this command shall have no effect. 

Table 21: AddServerCertificateAssignment command 

AddServerCertificateAssignment Access Class:WRITE_SYSTEM 

Message name Description 

AddServerCertificateAssignm
entRequest 

This message contains a request for the device to assign a certificate 
along with a certification path to the TLS server. 
 
tas:CertificationPathID CertificationPathID[1][1] 
 

AddServerCertificateAssignm
entResponse 

This is an empty message. 
 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:CertificationPathID 

No certification path is stored in the keystore under the given 
certification path ID. 

env:Sender 
ter:InvalidArgVal 
ter:NoPrivateKey 

The key pair that is associated with the first certificate in the 
certification path (i.e., the server certificate) does not have an 
associated private key. 

env: Receiver 
ter: Action 
ter:MaximumNumberOfTLSC
ertificationPathsReached 

The maximum number of certification paths that may be assigned to 
the TLS server simultaneously is reached. 

 

5.3.2.2 Remove Server Certificate Assignment 
This operation removes a key pair and certificate assignment (including certification path) to 
the TLS server on the device. 

Certification paths are identified using certification path IDs. If the supplied certification path 
ID is not associated with the TLS server, an InvalidArgVal fault is produced. 



ONVIF™ – 33 –  Advanced Security Service 
Ver. 1.1 

 
Table 22: RemoveServerCertificateAssignment command 

RemoveServerCertificateAssignment Access Class:WRITE_SYSTEM 

Message name Description 

RemoveServerCertificateAssi
gnmentRequest 

This message contains a request for the device to remove a TLS 
server certificate assignment along with a corresponding certification 
path from the TLS server. 
 
tas:CertificationPathID CertificationPathID[1][1] 
 

RemoveServerCertificateAssi
gnmentResponse 

This is an empty message. 
 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:OldCertificationPathID 

No certification path under the given certification path ID is associated 
with the TLS server. 

 

5.3.2.3 Replace Server Certificate Assignment 
This operation replaces an existing key pair and certificate assignment to the TLS server on 
the device by a new key pair and certificate assignment (including certification paths). 

After the replacement, the TLS server shall use the new certificate and certification path 
exactly in those cases in which it would have used the old certificate and certification path. 
Therefore, especially in the case that several server certificates are assigned to the TLS 
server, clients that wish to replace an old certificate assignment by a new assignment should 
use this operation instead of a combination of the Add TLS Server Certificate Assignment and 
the Remove TLS Server Certificate Assignment operations. 

Certification paths are identified using certification path IDs. If the supplied old certification 
path ID is not associated with the TLS server, or no certification path exists under the new 
certification path ID, the corresponding InvalidArgVal faults are produced and the associations 
are unchanged. 

The first certificate in the new certification path shall be the TLS server certificate. 

Since each certificate has exactly one associated key pair, a reference to the key pair that is 
associated with the new server certificate is not supplied explicitly. Devices shall obtain the 
private key or results of operations under the private key by suitable internal interaction with 
the keystore. 

If a device chooses to perform a TLS key exchange based on the new certification path, it 
shall use the key pair that is associated with the server certificate for key exchange and 
transmit the certification path to TLS clients as-is, i.e., the device shall not check 
conformance of the certification path to [RFC 4346, RFC 2246]. 

In order to use the server certificate during the TLS handshake, the corresponding private key 
is required. Therefore, if the key pair that is associated with the server certificate, i.e., the first 
certificate in the certification path, does not have an associated private key, the NoPrivateKey 
fault is produced and the certification path is not associated with the TLS server. 



ONVIF™ – 34 –  Advanced Security Service 
Ver. 1.1 

 
Table 23: ReplaceServerCertificateAssignment command 

ReplaceServerCertificateAssignment Access Class:WRITE_SYSTEM 

Message name Description 

ReplaceServerCertificateAssi
gnmentRequest 

This message contains a request for the device to replace a TLS 
server certificate assignment to the TLS server by a new key pair and 
certificate assignment. 
 
tas:CertificationPathID OldCertificationPathID[1][1] 
tas:CertificationPathID NewCertificationPathID[1][1] 
 

ReplaceServerCertificateAssi
gnmentResponse 

This is an empty message. 
 

Fault codes Description 

env:Sender 
ter:InvalidArgVal 
ter:OldCertificationPathID 

No certification path under the given certification path ID is associated 
with the TLS server. 

env:Sender 
ter:InvalidArgVal 
ter:NewCertificationPathID 

No certification path is stored in the keystore under the given 
certification path ID. 

env:Sender 
ter:InvalidArgVal 
ter:NoPrivateKey 

The key pair that is associated with the first certificate in the new 
certification path (i.e., the server certificate), does not have an 
associated private key. 

 

5.3.2.4 Get Assigned Server Certificates 
This operation returns the IDs of all certification paths that are assigned to the TLS server on 
the device. 

This operation may be used, e.g., if a client lost track of the certification path assignments on 
the device. 

If no certification path is assigned to the TLS server, an empty list is returned. 

Table 24: GetAssignedServerCertificates command 

GetAssignedServerCertificates Access Class: READ_SYSTEM_SECRET 

Message name Description 

GetAssignedServerCertificates
Request 

This message contains a request for the device to return the IDs of 
all certification paths that are assigned to the TLS server on the 
device. 
 
This is an empty message. 
 

GetAssignedServerCertificates
Response 

This message contains the IDs of all certification paths that are 
assigned to the TLS server on the device. 
 
tas:CertificationPathID CertificationPathID [0][unbounded] 
 

Fault codes Description 

 No command-specific fault codes. 

 



ONVIF™ – 35 –  Advanced Security Service 
Ver. 1.1 

 
5.4 Capabilities 

5.4.1 Advanced Security Service Capabilities 
The capabilities reflect optional functions and functionality of the different features in the 
advanced security service. The service capabilities consist of keystore capabilities and TLS 
server capabilities. The information is static and does not change during device operation. 

A device shall support this command. 

Table 25: GetServiceCapabilitites command 

GetServiceCapabilities Access Class: PRE_AUTH 

Message name Description 

GetServiceCapabilitiesReque
st 

This is an empty message. 

GetServiceCapabilitiesRespo
nse The capability response message contains the requested service 

capabilities using a hierarchical XML capability structure. 

tas:Capabilities Capabilities [1][1] 

Fault codes Description 

 No command-specific fault codes. 

 

5.4.2 Keystore Capabilities 
The keystore capabilities reflect optional functions and functionality of the keystore on a 
device. The following capabilites are available:  

Table 26: Keystore Capabilities 
 
Capability Name Capability Semantics 

MaximumNumberOfPassphrases Indicates the maximum number of 
passphrases that the device is able to store 
simultaneously. 

MaximumNumberOfKeys Indicates the maximum number of keys that 
the device is able store simultaneously. 

MaximumNumberOfCertificates Indicates the maximum number of certificates 
that the device is able to store 
simultaneously. 

MaximumNumberOfCertificationPaths Indicates the maximum number of certificate 
paths that the device is able to store 
simultaneously. 

RSAKeyPairGeneration Indicates support for on-board RSA key pair 
generation. 

RSAKeyLengths Indicates which RSA key lengths are 
supported by the device. 



ONVIF™ – 36 –  Advanced Security Service 
Ver. 1.1 

 

PKCS8RSAKeyPairUpload Indicates support for uploading an RSA key 
pair in a PKCS#8 data structure. 

PKCS12CertificateWithRSAPrivateKeyUpload Indicates support for uploading a certificate 
along with an RSA private key in a PKCS#12 
data structure. 

PKCS10ExternalCertificationWithRSA Indicates support for creating PKCS#10 
requests for RSA keys and uploading the 
certificate obtained from a CA. 

SelfSignedCertificateCreationWithRSA Indicates support for creating self-signed 
certificates for RSA keys. 

SignatureAlgorithms Indicates which signature algorithms are 
supported by the device. 

PasswordBasedEncryptionAlgorithms Indicates which password-based encryption 
algorithms are supported by the device. 

PasswordBasedMACAlgorithms Indicates which password-based MAC 
algorithms are supported by the device. 

X.509Versions Indicates which X.509 versions are supported 
by the device. 2  X.509 versions shall be 
encoded as version numbers, e.g., 1, 2, 3. 

 

5.4.3 TLS Server Capabilities 
The TLS server capabilities reflect optional functions and functionality of the TLS server. The 
information is static and does not change during device operation. The following capabilites 
are available:  

Table 27: TLS Server Capabilities 
 
TLSServerSupported Indicates which TLS server versions are 

supported by the device. Server versions 
shall be encoded as version numbers, e.g., 
1.0, 1.1., 1.2. 

MaximumNumberOfTLSCertificationPaths Indicates the maximum number of 
certification paths that may be assigned to 
the TLS server simultaneously. 

 

                                                 
2 If a device supports X.509v3 certificates, this fact shall also be signalled by this capability. 



ONVIF™ – 37 –  Advanced Security Service 
Ver. 1.1 

 
5.4.4 Capability-implied Requirements 
Table 28 summarizes for each capability the minimum requirements that a device signaling 
this capability shall satisfy; it should not be seen as a recommendation. 

Table 28: Requirements implied by Capabilities 
 
Capability Implied Requirements 

MaximumNumberOfPassphr
ases 

If greater than zero, the following commands shall be 
supported: 

• UploadPassphrase 

• GetAllPassphrases 

• DeletePassphrase 

If greater than zero, the device shall support passphrases that 
consist of characters from the ASCII character set and that 
have a length of up to 40 characters. 

MaximumNumberOfKeys If greater than zero, then the following commands shall be 
supported: 

• GetKeyStatus 

• GetAllKeys 

• DeleteKey 

MaximumNumberOfCertifica
tes 

If greater than zero, then MaximumNumberOfKeys>0 shall 
hold. 

MaximumNumberOfCertifica
tionPaths 

If greater than zero, MaximumNumberOfCertificates>=2 shall 
hold. 

RSAKeyPairGeneration If true, the following commands shall be supported: 

• CreateRSAKeyPair 

• GetPrivateKeyStatus 

If true, the list of supported RSA key lengths as indicated by 
the RSAKeyLenghts capability shall not be empty. 

If true, MaximumNumberOfKeys>0 shall hold. 

PKCS8RSAKeyPairUpload If true, the following commands shall be supported: 

• UploadKeyPairInPKCS8 

• GetPrivateKeyStatus 

If true, MaximumNumberOfPassphrases >0 shall hold. 

If true, MaximumNumberOfKeys > 0 shall hold. 

If true, the list of supported RSA key lengths as indicated by 



ONVIF™ – 38 –  Advanced Security Service 
Ver. 1.1 

 
the RSAKeyLenghts capability shall not be empty. 

If true, the list of supported password-based encryption 
algorithms as indicated by the 
PasswordBasedEncryptionAlgorithms capability shall contain at 
least the algorithm pbeWithSHAAnd3-KeyTripleDES-CBC. 

 

PKCS12CertificateWithRSA
PrivateKeyUpload 

If true, the following commands shall be supported: 

• UploadCertificateWithPrivateKeyInPKCS12 

• GetPrivateKeyStatus 

• GetCertificate 

• GetAllCertificates 

• DeleteCertificate 

• GetCertificationPath 

• GetAllCertificationPaths 

• DeleteCertificationPath 

If true, MaximumNumberOfPassphrases >0 shall hold. 

If true, MaximumNumberOfKeys >=2 shall hold. 

If true, MaximumNumberOfCertificates >=2 shall hold. 

If true, MaximumNumberOfCertificattionPaths >0 shall hold. 

If true, SignatureAlgorithms shall not be empty. 

If true, the list of supported RSA key lengths as indicated by 
the RSAKeyLenghts capability shall not be empty. 

If true, the list of supported password-based encryption 
algorithms as indicated by the 
PasswordBasedEncryptionAlgorithms capability shall contain at 
least the algorithm pbeWithSHAAnd3-KeyTripleDES-CBC. 

If true, the list of supported password-based MAC algorithms 
as indicated by the PasswordBasedMACAlgorithms capability 
shall contain at least the algorithm hmacWithSHA256. 

If true, the list of supported X.509 versions as indicated by the 
X.509Versions capability shall contain at least the value 3. 

If true, the list of supported signature algorithms as indicated 
by the SignatureAlgorithms capability shall contain at least the 
algorithms sha1-WithRSAEncryption and 
sha256WithRSAEncryption. 

PKCS10ExternalCertificatio
nWithRSA 

If true, the following operations shall be supported: 

• RSA key pair generation as signaled by the 
RSAKeyPairGeneration capability or RSA key pair 
upload as signaled by the PKCS8RSAKeyPairUpload 
capability or RSA key pair upload as signaled by the 



ONVIF™ – 39 –  Advanced Security Service 
Ver. 1.1 

 
PKCS12CertificateWithRSAPrivateKeyUpload capability 

• Creating a CSR with the CreatePKCS10CSR command. 

• GetCertificate 

• GetAllCertificates 

• DeleteCertificate 

• Uploading the certificate created for the CSR as well as 
the certificate of the created certificate’s signer with the 
UploadCertificate command. 

If true, SignatureAlgorithms shall not be empty. 

If true, MaximumNumberOfCertificates>=2 and 
MaximumNumberOfCertificationPaths>0 shall hold. 

If true, MaximumNumberOfKeys>=2 shall hold. 

If true, the list of supported signature algorithms as indicated 
by the SignatureAlgorithms capability shall contain at least the 
algorithms sha1-WithRSAEncryption and 
sha256WithRSAEncryption. 

SelfSignedCertificateCreati
onWithRSA 

If true, the following commands shall be supported: 

• CreateSelfSignedCertificate 

• GetCertificate 

• GetAllCertificates 

• DeleteCertificate 

If true, the following operations shall be supported: 

• RSA key pair generation as signaled by the 
RSAKeyPairGeneration capability or RSA key pair 
upload as signaled by the PKCS8RSAKeyPairUpload 
capability or RSA key pair upload as signaled by the 
PKCS12CertificateWithRSAPrivateKeyUpload capability 

If true, MaximumNumberOfCertificates> 0 shall hold. 

If true, SignatureAlgorithmsshall not be empty 

If true, the list of supported signature algorithms as indicated 
by the SignatureAlgorithms capability shall contain at least the 
algorithms sha1-WithRSAEncryption and 
sha256WithRSAEncryption. 

TLSServerSupported If not empty, the value 1.0 shall be contained in the list of 
supported TLS versions. 

If not empty, PKCS10ExternalCertificationWithRSA shall be 
true or SelfSignedCertificateCreationWithRSA shall be true. 

If not empty, the following commands shall be supported: 

• CreateCertificationPath 



ONVIF™ – 40 –  Advanced Security Service 
Ver. 1.1 

 
• GetCertificationPath 

• GetAllCertificationPaths 

• DeleteCertificationPath 

• AddTLSServerCertificateAssignment 

• RemoveTLSServerCertificateAssignment 

• ReplaceTLSServerCertificateAssignment 

• GetAssignedServerCertificates 

If not empty, MaximumNumberOfCertificationPaths>=2 and 
MaximumNumberOfTLSCertificationPaths>0 shall hold. 

TLSServerSupported and 
PKCS10ExternalCertificatio
nWithRSA 

If both TLSServerSupported and 
PKCS10ExternalCertificationWithRSA are true, 
MaximumNumberOfCertificates>=3 shall hold. 

MaximumNumberOfTLSCert
ificationPaths 

If greater than zero, MaximumNumberOfCertificationPaths>0 
shall hold. 

 

5.5 Events 

5.5.1 Key Status 
A device that indicates support for key handling via the MaximumNumberOfKeys capability 
shall provide information about key status changes through key status events. 

A device shall include an OldStatus value unless NewStatus is generating. 

 
Topic: tns1:Advancedsecurity/Keystore/KeyStatus 
<tt:MessageDescription> 

<tt:Source> 
<tt:SimpleItemDescription Name="KeyID" Type="tas:KeyID"/> 

</tt:Source> 
<tt:Data> 

<tt:SimpleItemDescriptionminOccurs=”0” Name="OldStatus" 
Type="tas:KeyStatus"/> 
<tt:SimpleItemDescription Name="NewStatus" 
Type="tas:KeyStatus"/> 

</tt:Data> 
</tt:MessageDescription> 

5.6 Service specific data types 
The service specific data types are defined in advancedsecurity.wsdl. 

  



ONVIF™ – 41 –  Advanced Security Service 
Ver. 1.1 

 
5.7 Service specific fault codes 
The table below lists the advanced security service specific fault codes. Additionally, each 
command can also generate a generic fault as defined in the [ONVIF Core specification]. 

Table 29: Advanced security service specific fault codes 

Fault Code Parent Subcode Fault Reason Description 

Subcode 

 
env:Sender 
 

ter:InvalidArgVal KeyID not 
appropriate 

No key is stored under the 
requested KeyID. ter:KeyID 

env:Sender 
 

ter:InvalidArgVal Key type invalid The key stored in the keystore 
under the requested KeyID is 
of an invalid type. 

ter:InvalidKeyType 

env:Receiver ter:Action Deletion of a key 
failed. 

Deleting the key with the 
requested KeyID failed. ter:KeyDeletionFailed 

env:Receiver ter:Action Failure to create a 
CSR 

The generation of the 
PKCS#10 certification request 
failed. 

ter:CSRCreationFailed 

env:Sender 
 

ter:InvalidArgVal Signature algorithm 
not supported 

The specified signature 
algorithm is not supported by 
the device. 

ter:UnsupportedSignatureAlgo
rithm 

env:Sender ter:InvalidArgVal Mismatch of key and 
signature algorithm 

The specified public key is an 
invalid input to the specified 
signature algorithm. 

ter:KeySignatureAlgorithmMis
match 

env:Sender ter:InvalidArgVal KeyStatus invalid The key with the requested 
KeyID has an inappropriate 
status. 

ter:InvalidKeyStatus 

env:Sender ter:InvalidArgVal Subject invalid The specified subject is 
invalid or incomplete. ter:InvalidSubject 

env:Sender ter:InvalidArgVal Attribute invalid The specified attribute is 
invalid or incomplete. ter:InvalidAttribute 

env:Sender ter:InvalidArgVal dateTime invalid The specified dateTime is 
invalid. ter:InvalidDateTime 

env:Receiver 
 

ter:Action Certificate creation 
failed. 

The generation of a certificate 
failed. ter:CertificateCreationFailed 

env:Receiver ter:Action Maximum number of 
certificates reached 

The device does not have 
enough storage space to 
store the certificate to be 
created. 

ter:MaximumNumberOfCertifi
catesReached 

ter:Sender ter:InvalidArgVal X509 version not 
supported 

The specified X.509 version is 
not supported by the device. ter:UnsupportedX509Version 

env:Sender 
 

ter:InvalidArgVal Extensions not 
supported 

The request contains 
extensions that are not 
supported by the X.509 
version specified in the 
request. 

ter:X509VersionExtensionsMi
smatch 

env:Receiver ter:Action Maximum number of The keystore does not have 



ONVIF™ – 42 –  Advanced Security Service 
Ver. 1.1 

 
ter: 
MaximumNumberOfKeysRea
ched 

keys reached enough storage space to 
store the key pair that has to 
be generated. 

env:Sender ter:InvalidArgVal Certificate bad The supplied certificate 
cannot be processed by the 
device. 

ter:BadCertificate 

env:Sender 
 

ter:InvalidArgVal Public key algorithm 
not supported 

The public key algorithm of 
the public key in the certificate 
is not supported by the 
device. 

ter:UnsupportedPublicKeyAlg
orithm 

env:Receiver ter:Action Matching private key 
not found. 

The keystore does not contain 
a key pair with a private key 
that matches the public key in 
the uploaded certificate. 

ter:NoMatchingPrivateKey 

env:Sender ter:InvalidArgVal CertificateID not 
appropriate 

No certificate is stored under 
the requested CertificateID. ter:CertificateID 

env:Receiver 
 

ter:Action Deletion of a 
certificate failed. 

Deleting the certificate with 
the requested CertificateID 
failed. 

ter:CertificateDeletionFailed 

env:Sender ter:InvalidArgVal ReferenceExists A reference exists for the 
object that is to be deleted. ter:ReferenceExists 

env:Sender ter:InvalidArgVal CertificationPath 
invalid 

At least one certificate in the 
certification path is not 
correctly signed with the 
public key in the next 
certificate in the path. 

ter:InvalidCertificationPath 

env:Receiver 
 

ter:Action Certification path 
creation failed. 

Creating the certification path 
failed. ter:CertificationPathCreationF

ailed 
env:Sender ter:InvalidArgVal Certification Path ID 

invalid 

No certification path is stored 
under the requested 
certification path ID. 
 
 

ter:CertificationPathID 

env:Receiver ter:Action Certification path 
deletion failed 

Deleting the certification path 
with the requested 
certification path ID failed. 

ter:CertificationPathDeletionF
ailed 

env:Sender 
 

ter:InvalidArgVal The key pair does 
not contain a private 
key. 

The key pair that is 
associated with the first 
certificate in the certificate 
chain does not have an 
associated private key. 

ter:NoPrivateKey 

env:Receiver ter:Action Maximum number of 
certification paths 
received. 

The maximum number of 
certification paths that may be 
assigned to the TLS server 
simultaneously is reached. 

ter:MaximumNumberOfCertifi
cationPathsReached 

env:Sender ter:InvalidArgVal Invalid old 
certification path ID 

No certification path under the 
given old certification path ID 
is associated with the TLS 
server. 

ter:OldCertificationPathID 

env:Sender 
 

ter:InvalidArgVal Invalid new 
certification path ID 

No certification path is stored 
in the keystore under the 
given certification path ID. 

ter:NewCertificationPathID 

env:Receiver 
 

ter:Action Maximum number of 
TLS certification 
paths reached 

The maximum number of 
certification paths that may be 
assigned to the TLS server 
simultaneously is reached. 

ter: 
MaximumNumberOfTLSCertifi
cationPathsReached 



ONVIF™ – 43 –  Advanced Security Service 
Ver. 1.1 

 
env:Sender 
 

ter:InvalidArgVal PassphraseID not 
appropriate 

No passphrase is stored 
under the requested 
PassphraseID. 

ter:PassphraseID 

env:Sender 
 

ter:InvalidArgVal Invalid PKCS#8 File The PKCS#8 data structure 
cannot be processed by the 
device. 

ter:BadPKCS8File 

env:Sender 
 

ter:InvalidArgVal Decryption failed The given data could not be 
decrypted. ter:DecryptionFailed 

env:Sender 
 

ter:InvalidArgVal Public and private 
key do not match 

The supplied private key does 
not match the supplied public 
key. ter:PublicPrivateKeyMismatch 

env:Sender 
 

ter:InvalidArgVal Invalid PKCS#12 File The PKCS#12 data structure 
cannot be processed by the 
device. 

ter:BadPKCS12File 

 

6 Security Considerations 

This section is informative. 

• Faults and their types shall not disclose sensitive information to an attacker that he 
could not obtain otherwise. 

• For interoperability reasons, sha1WithRSAEncryption as specified in [RFC3279] is 
mandated as default signature algorithm. However, since the security of the SHA-1 
algorithm is under question, this specification mandates that a signature algorithm 
based on SHA-256, particularly sha256WithRSAEncryption as specified in [RFC 4055], 
be supported in addition. 

• Operations with arguments that need protection against eavesdropping or 
manipulation shall only be executed over sufficiently protected communication 
channels.  

• It is good practice not to use the same key for different purposes. In order to prevent 
the device from using the same key for different purposes unnoticedly, this 
specification mandates that all keys in the keystore be distinct. 

• Private keys must be protected against disclosure to unauthorized parties. If a private 
key is uploaded in an encrypted PKCS#8 or PKCS#12 structure, the passphrase that 
is used to encrypt the structure must be uploaded to the device over a communication 
channel that is protected against eavesdropping in order to preserve the confidentiality 
of the private key. Moreover, the confidentiality of the uploaded private key depends 
on the strength of the encryption passphrase. It is therefore strongly recommended to 
use random passwords with sufficient length. 

• In general, externally generated keys must be regarded less trustworthy than keys that 
are generated by the device because the probability of being disclosed to an attacker 
is higher for an externally generated key than for an internally generated key. A client 
may determine whether a key was generated by the device from the 
externallyGenerated attribute of the key. 

• While new specifications should be based on [PKCS#5 v2.0] or higher, adoption of this 
standard is still limited. Therefore, this specification intends to balance security and 
interoperability by mandating cryptographic algorithms based on [PKCS#5 v1.5] as 
interoperability baseline while strongly encouraging the use of [PKCS#5 v2.0] or 
higher. Future versions of this specification or specifications referring to this 
specification may mandate additional cryptographic algorithms. 



ONVIF™ – 44 –  Advanced Security Service 
Ver. 1.1 

 
• Although PKCS#8 [RFC 5208] is widely used for exchanging cryptographic keys, this 

specification is based on the successor standard [RFC 5958], particularly in order to 
incorporate both private key and public key in the same data structure. 

7 Design Rationale 

This section is informative. 

7.1 General Design Goals 
The Advanced Security Service is designed for modularity and extensibility. Therefore, each 
security feature is encapsulated in a separate port type within the service. Later revisions of 
this specification may add port types to enhance the Advanced Security Service by additional 
security features. 

Within a security feature, capabilities indicate support for sub-features and configuration 
options. Later revisions of this specification may add additional sub-features to existing 
features and identify them by additional capabilities. 

Port types and capabilities enable devices to support well-defined subsets of this specification 
and to communicate this information to clients effectively. 

7.2 Keystore 
The keystore design assumes that passphrases are chosen by clients. Therefore, an 
operation for retrieving passphrases from a device is deliberately omitted. If client loses a 
previously uploaded passphrase, the client should create a new passphrase, upload the new 
passphrase to the device, and delete the old passphrase from the device. 

This specification deliberately deviates from the terminology in PKCS#8 and PKCS#12 by 
using the term ‘passphrase’ instead of ‘password’ in order to avoid confusion with the 
password that is assigned to ONVIF device users and the corresponding API in the ONVIF 
Device Management Service. 

The keystore design is based on the rationale that an RSA key pair is a special type of key 
pair and a key pair is a special type of key. Therefore, key-related operations in the keystore 
deliberately refer to the most generic possible type in this hierarchy. For example, the 
DeleteKey operation (see Sect. 5.2.6.1.5) refers to a key instead of a key pair or even an 
RSAKeyPair because it is applicable to all keys. On the other hand, the GetPrivateKeyStatus 
command refers to a key pair instead of a key, since this command is not meaningful for a key 
that is not a key pair, e.g., a symmetric key. 

While this revision of the keystore specification only supports RSA key pairs as key pairs, 
later revisions of this specification may add other types of key pairs or symmetric keys as 
special types of keys. 

Some interactions with the keystore, e.g., retrieving the private key for a public key that is 
contained in a certificate, are required device-internally, but need not be accessible to clients 
and may even, as in the above example, imply a security risk when made available outside 
the device. Such operations are therefore deliberately omitted from this specification. 

7.3 TLS Server 
This revision of the Advanced Security Service Specification allows to manage assignments of 
certification paths to the TLS server on a device. It is permitted that a TLS server presents 
different certification paths to different clients, therefore more than one certification path may 
be assigned simultaneously to the TLS server to use as a server certificate. 

All other configuration of the TLS server on a device is outside the scope of this specification 
revision and may be addressed by later revisions of this document. 



ONVIF™ – 45 –  Advanced Security Service 
Ver. 1.1 

 
Annex A. Revision History 

Rev. Date Editor Changes 

1.0 Aug - 2013 Dirk Stegemann Initial version 

1.0.1 Dec - 2013 Michio Hirai,  
Dirk Stegemann 

Change Request 1219, 1220 
1222, 1267, 1271, 1272, 1277 

1.0.2 June - 2014 Dirk Stegemann, 
Stefan Andersson 

Change Request 1268, 1276, 1349, 1350, 1351, 1352, 
1376, 1377, 1378, 1379, 1380, 1381, 1382, 1390 

1.1 Dec - 2014 Dirk Stegemann Change Request 1528, 1529, 1530, 1531, 1532, 1533, 
1534, 1535, 1536, 1543, 1554 

 


	1 Scope
	2 Normative References
	3 Terms and Definitions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Namespace

	4 Overview
	5 Advanced Security Service
	5.1 General Structure
	5.2 Keystore
	5.2.1 Elements of the Keystore
	5.2.2 Unique Identifiers
	5.2.3 Uniqueness of Objects in the Keystore
	5.2.4 Referential Integrity
	5.2.5 Key Status
	5.2.6 Keystore Operations
	5.2.6.1 Passphrase Management
	5.2.6.1.1 Upload Passphrase
	5.2.6.1.2 Get All Passphrases
	5.2.6.1.3 Delete Passphrase

	5.2.6.2 Key Management
	5.2.6.2.1 Create RSA Key Pair
	5.2.6.2.2 Upload Key Pair in PKCS#8
	5.2.6.2.3 Get Key Status
	5.2.6.2.4 Get Private Key Status
	5.2.6.2.5 Get All Keys
	5.2.6.2.6 Delete Key

	5.2.6.3 Certificate Management
	5.2.6.3.1 Create PKCS#10 Certification Request
	5.2.6.3.2 Create Self-Signed Certificate
	5.2.6.3.3 Upload Certificate
	5.2.6.3.4 Upload Certificate with Private Key in PKCS#12
	5.2.6.3.5 Get Certificate
	5.2.6.3.6 Get All Certificates
	5.2.6.3.7 Delete Certificate
	5.2.6.3.8 Create Certification Path
	5.2.6.3.9 Get Certification Path
	5.2.6.3.10 Get All Certification Paths
	5.2.6.3.11 Delete Certification Path



	5.3 TLS Server
	5.3.1 Elements of the TLS Server
	5.3.2 TLS Server Operations
	5.3.2.1 Add Server Certificate Assignment
	5.3.2.2 Remove Server Certificate Assignment
	5.3.2.3 Replace Server Certificate Assignment
	5.3.2.4 Get Assigned Server Certificates


	5.4 Capabilities
	5.4.1 Advanced Security Service Capabilities
	5.4.2 Keystore Capabilities
	5.4.3 TLS Server Capabilities
	5.4.4  Capability-implied Requirements

	5.5 Events
	5.5.1 Key Status

	5.6 Service specific data types
	5.7 Service specific fault codes

	6 Security Considerations
	7 Design Rationale
	7.1 General Design Goals
	7.2 Keystore
	7.3 TLS Server

	Annex A. Revision History

