
ONVIF™ – 1 – Advanced Security Service
Ver. 1.0.1

ONVIF™
Advanced SecurityService Specification

Version 1.0.1
December 2013

ONVIF™ – 2 – Advanced Security Service
Ver. 1.0.1

 2008-2013 by ONVIF: Open Network Video Interface Forum Inc.. All rights reserved.

Recipients of this document may copy, distribute, publish, or display this document so long as this
copyright notice, license and disclaimer are retained with all copies of the document. No license is
granted to modify this document.
THIS DOCUMENT IS PROVIDED "AS IS," AND THE CORPORATION AND ITS MEMBERS AND
THEIR AFFILIATES, MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.
IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS
DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES
WERE REASONABLY FORESEEABLE, AND ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THIS DOCUMENT. THE FOREGOING DISCLAIMER AND LIMITATION ON
LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS AND WARRANTIES
MADE BY THE MEMBERS AND THEIR RESPECTIVE AFFILIATES TO THE CORPORATION AND
OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE CORPORATION.

ONVIF™ – 3 – Advanced Security Service
Ver. 1.0.1

CONTENTS

1 Scope 4

2 Normative references 4

3 Terms and Definitions 5

3.1 Definitions.. 5

3.2 Abbreviations .. 5
3.3 Namespace ... 5

4 Overview 7

5 Advanced Security Service 7

5.1 General Structure .. 7

5.2 Keystore .. 7
5.2.1 Elements of the Keystore .. 7
5.2.2 Unique Identifiers .. 8
5.2.3 Uniqueness of Objects in the Keystore .. 8
5.2.4 Referential Integrity ... 8
5.2.5 Key Status ... 9
5.2.6 Keystore Operations ... 9

5.3 TLS Server .. 22
5.3.1 Elements of the TLS Server .. 22
5.3.2 TLS Server Operations ... 22

5.4 Capabilities .. 26
5.4.1 Advanced Security Service Capabilities ... 26
5.4.2 Keystore Capabilities .. 26
5.4.3 TLS Server Capabilities .. 27
5.4.4 Capability-implied Requirements .. 28

5.5 Events ... 29
5.5.1 Key Status ... 29

5.6 Service specific data types.. 30

5.7 Service specific fault codes ... 37
5.8 Protocol Options .. 39

6 Security Considerations 39

7 Design Rationale 39

7.1 General Design Goals ... 39

7.2 Keystore .. 40

7.3 TLS Server .. 40
Annex A. Revision History 41

ONVIF™ – 4 – Advanced Security Service
Ver. 1.0.1

1 Scope

This document defines the web service interface for ONVIF Advanced Security Features such
as a keystore and a TLS server on an ONVIF device.

Web service usage is outside of the scope of this document. Please refer to the ONVIF core
specification.

2 Normative references

ONVIF Core Specification

<http://www.onvif.org/specs/core/ONVIF-Core-Specification-v220.pdf>

RFC 2246 The TLS Protocol Version 1.0

<http://www.ietf.org/rfc/rfc2246.txt>

RFC 2986 PKCS #10 : Certification Request Syntax Specification Version 1.7

<http://www.ietf.org/rfc/rfc2986.txt>

RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile

<http://www.ietf.org/rfc/rfc3279.txt>

RFC 3447 Public Key Cryptography Standards #1: RSA Cryptogaphy Specifications Version
2.1

<http://www.ietf.org/rfc/rfc3447.txt>

RFC 4055 Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

<http://www.ietf.org/rfc/rfc4055.txt>

RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1

<http://www.ietf.org/rfc/rfc4346.txt>

RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile

<http://www.ietf.org/rfc/rfc5280.txt>

Unified Modeling Language (UML)

<http://www.omg.org/spec/UML>

http://www.onvif.org/specs/core/ONVIF-Core-Specification-v211.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.omg.org/spec/UML

ONVIF™ – 5 – Advanced Security Service
Ver. 1.0.1

3 Terms and Definitions

3.1 Definitions

Key A key is an input to a cryptographic algorithm. Sufficient randomness of
the key is usually a necessary condition for the security of the algorithm.
This specification supports RSA key pairs as keys.

Key Pair A key that consists of a public key and (optionally) a private key.

RSA key pair A key pair that is accepted as input by the RSA algorithm.

Digital
Signature

 A digital signature for an object allows to verify the object’s authenticity,
i.e., to check whether the object has in fact been created by the signer
and has not been modified afterwards. A digital signature is based on a
key pair, where the private key is used to create the signature and the
public key is used for verification of the signature.

Certificate A certificate as used in this specification binds a public key to a subject
entity. The certificate is digitally signed by the certificate issuer (the
certification authority) to allow for verifying its authenticity.

Certification
Path

 A certification path is a sequence of certificates in which the signature of
each certificate except for the last certificate can be verified with the
subject public key in the next certificate in the sequence.

Certification
Authority

 A certification authority is an entity that issues certificates to subject
entities.

Alias An alias is a name for an object on the device that is chosen by the
client and treated transparently by the device.

3.2 Abbreviations
CA Certification Authority

CSR Certificate Signing Request (also called Certification Request)

ONVIF Open Network Video Interface Forum

SHA Secure Hashing Algorithm

TLS Transport Layer Security

3.3 Namespace
This document references the following namespaces:

Prefix Namespace URI

env http://www.w3.org/2003/05/soap-envelope

ter http://www.onvif.org/ver10/error

tt http://www.onvif.org/ver10/schema

xs http://www.w3.org/2001/XMLSchema

tas http://www.onvif.org/ver10/advancedsecurity/wsdl

ONVIF™ – 6 – Advanced Security Service
Ver. 1.0.1

ONVIF™ – 7 – Advanced Security Service
Ver. 1.0.1

4 Overview

This specification covers the following advanced security features:

• Keys and certificates management interface (keystore)

• TLS server configuration interface

Basic security features such as user authentication based on WS UsernameToken and HTTP
Authentication as well as a default access policy are specified in the [ONVIF Core
Specification] as part of the device management service.

WSDL for the Advanced Security service is specified in
<http://www.onvif.org/ver10/advancedsecurity/wsdl/advancedsecurity.wsdl>.

All sections in this specification are normative unless explicitly marked as informative.

5 Advanced Security Service

5.1 General Structure
This section covers the security features

• Keystore

• TLS server

The design and data model of the ONVIF Advanced Security Service is reflected in Figure 1.

Figure 1ONVIF Advanced Security Service[UML]Class Diagram

5.2 Keystore

5.2.1 Elements of the Keystore
The keystoresecurity feature handles the storage and management of keys and certificates on
an ONVIF device.

http://www.onvif.org/ver10/advancedsecurity/wsdl/advancedsecurity.wsdl

ONVIF™ – 8 – Advanced Security Service
Ver. 1.0.1

Thekeystore specified in this document supports keys, key pairs, which are a particular type
of key, RSA key pairs, which are a particular type of key pairs, certificates, and certification
paths.

5.2.2 Unique Identifiers
An ID is used to uniquely identify objects of a particular type in the keystore on a device, i.e.,
no two objects of the same type shall have the same ID at any time.

Keys in the keystoreshall be uniquely identified by key IDs, certificates shall be uniquely
identified by certificate IDs, and certification paths in the keystoreshall be uniquely identified
by certification path IDs.

It shall be noted that while IDs within a specific type must be unique, no requirement exists for
the uniqueness of IDs across different types. For example, there may be a key and a
certificate in the keystore that share the same ID.

Devices may assign the ID of a deleted identified object to another, subsequently generated
object. However, devices should avoid re-using IDs as long as possible to avoid race
conditions on the client side.

A client may supply an alias for keys, certificates, and certification paths upon creation, e.g.,
to facilitate recognizing the created object at a later time. The device shall treat such aliases
as unstructured data.

5.2.3 Uniqueness of Objects in the Keystore
A device shall allow multiple copies of the same certificate and multiple copies of the
samecertification path to be present in the keystore under different IDs, respectively.

A device shall not allow multiple copies of the same key to be present in the keystore
simultaneously.

5.2.4 Referential Integrity
The keystore design relies on associations between

• Keys, especially key pairs, and certificates

• Public keys and private keys in key pairs

• Certificates and certification paths

• Keys and security features

• Certificates and security features

A device shall enforce the following referential integrity rules for delete operations:

• A key shall not be deleted if it is referenced by a certificate or a security feature.

• A certificate shall not be deleted if it is referenced by a certification path or a security
feature.

• A certification path shall not be deleted if it is referenced by a security feature.

This integrity rule may be enforced by the following mechanism. Reference counters are
maintained for keys, certificates and certification paths. Each time a reference to an object of
these types is added, e.g., by associating a certificate to a key pair or assigning a key pair or
certificate to a security feature, the reference counter of the object is incremented. Conversely,
if a reference to an object is deleted,the reference counter of the referenced objectis
decremented. Deleting a key, certificate, or certification pathis only permitted if the
corresponding reference counter is equal to zero.

A device shall enforce the following referential integrity rules for update operations:

ONVIF™ – 9 – Advanced Security Service
Ver. 1.0.1

• A key shall not be updated if it is referenced by a certificate or a security feature.

• A certificate shall not be updated if it is referenced by a certification path or a security
feature.

This specification omits APIs for modifying keys or certificates.If a key or certificate is to be
updated, it has to be deleted and newly generated with the updated information. If other API
exists that allows for modification of keys or certificates, special care shall be taken in order
not to break the referential integrity rule.

A deviceshall enforce the following invariants.

• The private key and the public key in an asymmetric key pair in the keystore shall
always match, i.e., the asymmetric operation under the public key is the inverse of the
corresponding operation under the private key.

• The public key in a certificate in the keystore and the public key in an associated key
pair in the keystore shall always be equal for all associated key pairs.

5.2.5 Key Status
A key in the keystore is always in exactly one of the following states:

• ok (The key is ready to be used)

• generating (The key is being generated and not yet ready for use)

• corrupt (The key is corrupt and shall not be used, e.g., because it was not properly
generated or a hardware fault corrupted a key that was ready to be used)

5.2.6 Keystore Operations

5.2.6.1 Key Management

5.2.6.1.1 Create RSA Key Pair
This operation triggers the asynchronous generation of an RSA key pair of a particular
keylength (specified as the number of bits) as specified in [RFC 3447], with a suitable key
generation mechanism on the device. Keys, especially RSA key pairs, are uniquely identified
using key IDs.

If the device does not have not enough storage capacity for storing the key pair to be created,
the maximum number of keys reached fault shall be produced and no key pair shall be
generated.Otherwise, the operation generates a keyID for the new key and associates the
generating status to it. Immediately after key generation has started, the device shall return
the keyID to the client and continue to generate the key pair. The client may query the device
with the GetKeyStatus operation (see Sect.5.2.6.1.2) whether the generation has finished.
The client may also subscribe to Key Status events (see Sect. 5.5.1) to be notified about key
status changes.

The device also returns a best-effort estimate of how much time it requires to create the key
pair.1 A client may use this information as an indication how long to wait before querying the
device whether key generation is completed.

After the key has been successfully created, the device shall assign it the ok status. If the key
generation fails, the device shall assign the key the corrupt status.

1 Implementors may estimate the key generation time for a fixed key length as the average
elapsed time of a number of key generation operations for this key length.

ONVIF™ – 10 – Advanced Security Service
Ver. 1.0.1

A device signalling support for RSA key pair generation via the RSAKeyPairGeneration
capability shall support this command.

Table 1: CreateRSAKeyPair command

CreateRSAKeyPair Access Class: WRITE_SYSTEM

Message name Description

 CreateRSAKeyPairRequest This message contains a request for the device to generate
an RSA key pair (i.e., a public and a private key).

xs:nonNegativeInteger KeyLength [1][1]
xs:string Alias [0][1]

CreateRSAKeyPairResponse This message contains the key ID of the key pair being
generated.

tas:KeyID KeyID [1][1]
xs:duration EstimatedCreationTime[1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:MaximumNumberOfKeysReached

The device does not have enough storage space to store the
key pair to be generated.

env:Sender
 ter:InvalidArgVal
 ter:KeyLength

The specified key length is not supported by the device.

5.2.6.1.2 Get Key Status
This operation returns the status of a key as defined in Sect. 5.2.5.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in
the keystore, an InvalidKeyID fault is produced. Otherwise, the status of the key is returned.

A device that indicates support for key handling via the MaximumNumberOfKeys capability
shall support this command.

Table 2: GetKeyStatus command

GetKeyStatus Access Class: READ_SYSTEM_SECRET

Message name Description

GetKeyStatusRequest This message contains a request for the device to return the status of a key
in the keystore.

tas:KeyID KeyID [1][1]

GetKeyStatusResponse This message contains the status of the requested KeyID.

tas:KeyStatus KeyStatus[1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:KeyID

No key is stored under the requested KeyID.

ONVIF™ – 11 – Advanced Security Service
Ver. 1.0.1

5.2.6.1.3 Get Private Key Status
This operation returns whether a key pair contains a private key.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in
the keystore, an invalid key ID fault shall be produced. If a key is stored under the requested
key ID in the keystore, but this key is not a key pair, an invalid key type fault shall be
produced.

Otherwise, this operation returns true if the key pair identified by the key ID contains a private
key, and false otherwise.

A device that indicates support for RSA key pairs via the RSAKeyPairGeneration capability
shall support this command.

Table 3: GetPrivateKeyStatus command

GetPrivateKeyStatus Access Class: READ_SYSTEM_SECRET

Message name Description

GetPrivateKeyStatusRequest This message contains a request for the device to return whether a
key pair contains a private key.

tas:KeyID KeyID [1][1]

GetPrivateKeyStatusResponse This message contains the status for the requested KeyID.

xs:boolean hasPrivateKey [1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:KeyID

No key is stored under the requested KeyID.

env:Sender
 ter:InvalidArgVal
 ter:InvalidKeyType

The key stored under the requested KeyID does not identify a
key pair.

5.2.6.1.4 Get All Keys
This operation returns information about all keys that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which keys are present on the device.

If no key is stored on the device, an empty list is returned.

A device that indicates support for key handling via the MaximumNumberOfKeys capability
shall support this command.

Table 4: GetAllKeys command

GetAllKeys Access Class: READ_SYSTEM_SECRET

Message name Description

GetAllKeysRequest This message contains a request for the device to return information
about all keys in the keystore.

This is an empty message.

GetAllKeysResponse This message contains information about all keys in the keystore.

tas:KeyAttributeKeyAttribute [0][unbounded]

ONVIF™ – 12 – Advanced Security Service
Ver. 1.0.1

Fault codes Description

 No command-specific fault codes.

5.2.6.1.5 Delete Key
This operation deletes a key from the device’s keystore.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in
the keystore, a device shall produce an InvalidArgVal fault. If a reference exists for the
specified key, a device shall produce the corresponding fault and shall not delete the key. If
there is a key under the requested key ID stored in the keystore and the key could not be
deleted, a device shall produce a KeyDeletion fault. If the key has the status generating,a
device shall abort the generation of the key and delete from the keystore all data generated
for this key.

After a key is successfully deleted, the device may assign its former ID to other keys.

A device that indicates support for key handling via the MaximumNumberOfKeys capability
shall support this command.

Table 5: DeleteKey command

DeleteKey Access Class: UNRECOVERABLE

Message name Description

DeleteKeyRequest This message contains a request for the device to delete a key from
the keystore.

tas:KeyID KeyID [1][1]

DeleteKeyResponse This is an empty message.

Fault codes Description

env:Receiver
 ter:Action
 ter:KeyDeletionFailed

Deleting the key with the requested KeyID failed.

env:Sender
 ter:InvalidArgVal
 ter:KeyID

No key is stored under the requested KeyID.

env:Sender
 ter:InvalidArgVal
 ter:ReferenceExists

A reference exists for the specified key.

5.2.6.2 Certificate Management

5.2.6.2.1 Create PKCS#10 Certification Request
This operation generates a DER-encoded PKCS#10 v1.7 certification request (sometimes
also called certificate signing request or CSR) as specified in [RFC 2986] for a public key on
the device.

The key pair that contains the public key for which a certification request shall be produced is
specified by its key ID. If no key is stored under the requested KeyID or the key specified by

ONVIF™ – 13 – Advanced Security Service
Ver. 1.0.1

the requested KeyID is not an asymmetric key pair, an invalid key ID fault shall be produced
and no CSR shall be generated.

The subject parameter describes the entity that the public key belongs to. Additional attributes
can be included in the attribute parameter.

The signature algorithm parameter determines which signature algorithm shall be used for
signing the certification request with the public key specified by the key ID parameter. A
device that supports this command shallas minimum support the sha-1WithRSAEncryption
signature algorithm as specified in [RFC 3279].Furthermore, if no signature algorithm is
specified in the request, adevice shall use the sha1-withRSAEncryption signature algorithm
for creating the signature. If the specified signature algorithm is not supported by the device,
an UnsupportedSignatureAlgorithm fault shall be produced and no CSR shall be generated. If
the public key identified by the requested Key ID is an invalid input to the specified signature
algorithm, a KeySignatureAlgorithmMismatch fault shall be produced and no CSR shall be
generated.

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and
no CSR shall be generated.

A device signalling support for creating PKCS#10 certification requests via the
PKCS10ExternalCertificationWithRSA capability shall support this command.

Table 6: CreatePKCS10CSR command

CreatePKCS10CSR Access Class: READ_SYSTEM

Message name Description

CreatePKCS10CSRRequest This message contains a request for the device to create a
PKCS#10 certification request for one of its public keys.

tas:DistinguishedName Subject [1][1]
tas:KeyID KeyID [1][1]
tas:CSRAttribute Attribute [0][unbounded]
tas:AlgorithmIdentifier SignatureAlgorithm[0][1]

CreatePKCS10CSRResponse This message contains the DER encoded PKCS#10
certification request.

tas:Base64DERencodedASN1ValuePKCS10CSR [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:CSRCreationFailed

The generation of the PKCS#10 certification request failed.

env:Sender
 ter: InvalidArgVal
 ter:KeyID

No key is stored under the requested KeyID or the key
specified by the requested Key ID is not an asymmetric key
pair.

env:Sender
 ter: InvalidArgVal
 ter:UnsupportedSignatureAlgorithm

The specified signature algorithm is not supported by the
device.

env:Sender
 ter: InvalidArgVal
ter:KeySignatureAlgorithmMismatch

The specified public key is an invalid input to the specified
signature algorithm.

env:Sender
 ter:InvalidArgVal
 ter:InvalidKeyStatus

The key with the requested KeyID has an inappropriate status.

ONVIF™ – 14 – Advanced Security Service
Ver. 1.0.1

5.2.6.2.2 Create Self-Signed Certificate
This operation generates for a public key on the device a self-signed X.509 certificate that
complies to [RFC 5280].

The X509Version parameter specifies the version of X.509 that the generated certificate shall
comply to. A device that supports this command shall support the generation of X.509v3
certificates as specified in [RFC 5280] and may additionally be able to handle other X.509
certificate formats as indicated by the X.509Versions capability. If no X509Version is specified
in the request, the device shall produce an X.509v3 certificate.

The key pair that contains the public key for which a self-signed certificate shall be produced
is specified by its key pair ID. The subject parameter describes the entity that the public key
belongs to.

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and
no certificate shall be generated.

The notValidBefore parameter specifies at which point in time the validity period of the
generated certificate shall begin. If this parameter is not specified in the request, the device
shall use its current time or a time before its current time as starting point of the validity
period.The notValidAfter parameter specifies at which point in time the validity period of the
generated certificate shall end. If this parameter is not specified in the request, the device
shall assign the GeneralizedTime value of 99991231235959Z as specified in [RFC 5280] to
the notValidAfter parameter.

The signature algorithm parameter determines which signature algorithm shall be used for
signing the certification request with the public key specified by the key ID parameter. A
device that supports this command shall as minimum support the sha-1WithRSAEncryption
signature algorithm as specified in [RFC 3279]. Furthermore, if no signature algorithm is
specified in the request, a device shall use the sha1-withRSAEncryption signature algorithm
for creating the signature.

The Extensions parameter specifies potential X509v3 extensions that shall be contained in
the certificate. A device that supports this command shall support the extensions that are
defined in [RFC5280], Sect. 4.2] as mandatory for CAs that issue self-signed certificates.

[RFC 5280, Sect. 4.1.2.2] mandates that the certificate serial numbers be unique for each
certificate issued by a given issuer (a CA). Since the subject is equal to the issuer in a self-
signed certificate, the serial number shall be unique for each self-signed certificate that the
device issues for a given subject.

The generated certificate must not contain a unique identifier as specified in [RFC 5280], Sect.
4.1.2.8 and shall not be marked as trusted.

Certificates are uniquely identified using certificate IDs. If the command was successful, the
device generates a new ID for the generated certificate and returns this ID.

If the device does not have not enough storage capacity for storing the certificate to be
created, the maximum number of certificates reached fault shall be produced and no
certificate shall be generated.

A device signalling support for creating RSA-based self-signed certificates via the
SelfSignedCertificateCreationWithRSA capability shall support this command.

ONVIF™ – 15 – Advanced Security Service
Ver. 1.0.1

Table 7: CreateSelfSignedCertificate command

CreateSelfSignedCertificate Access Class: WRITE_SYSTEM

Message name Description

CreateSelfSignedCertificateRequest This message contains a request for the device to
create for a public key on the device a self-signed,
RFC5280 compliant certificate.

xs:positiveX509Version [0][1]
tas:DistinguishedName Subject [1][1]
tas:KeyID KeyID [1][1]
xs:string Alias [0][1]
xs:dateTime notValidBefore [0][1]
xs:dateTime notValidAfter [0][1]
tas:AlgorithmIdentifier SignatureAlgorithm[0][1]
tas:X509v3Extension Extension [0][unbounded]

CreateSelfSignedCertificateResponse This message contains the certificate ID of the
successfully created certificate.

tas:CertificateID CertificateID [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:CertificateCreationFailed

The generation of the self-signed certificate failed.

env:Receiver
 ter:Action
 ter:MaximumNumberOfCertificatesReached

The device does not have enough storage space to
store the certificate to be created.

env:Sender
 ter: InvalidArgVal
 ter:UnsupportedX509Version

The specified X.509 version is not supported by the
device.

env:Sender
 ter: InvalidArgVal
 ter:KeyID

No key is stored under the requested KeyID or the key
specified by the requested Key ID is not an
asymmetric key pair.

env:Sender
 ter: InvalidArgVal
 ter:UnsupportedSignatureAlgorithm

The specified signature algorithm is not supported by
the device.

env:Sender
 ter: InvalidArgVal
ter:KeySignatureAlgorithmMismatch

The specified public key is an invalid input to the
specified signature algorithm.

env:Sender
 ter: InvalidArgVal
ter:X509VersionExtensionsMismatch

The request contains extensions which are not
supported by the X509Version in the request.

env:Sender
 ter:InvalidArgVal
 ter:InvalidKeyStatus

The key with the requested KeyID has an
inappropriate status.

5.2.6.2.3 Upload Certificate
This operation uploads an X.509 certificate as specified by [RFC 5280]in DER encoding and
the public key in the certificate to a device’s keystore. A device that supports this command
shall be able to handle X.509v3 certificates as specified in [RFC 5280] and may additionally
be able to handle other X.509 certificate formats as indicated by the X.509Versions capability.
A device that supports this command shall support sha1-WithRSAEncryption as certificate
signature algorithm.

ONVIF™ – 16 – Advanced Security Service
Ver. 1.0.1

Certificates are uniquely identified using certificate IDs,and key pairs are uniquely identified
using key IDs. The device shall generate a new certificate ID for the uploaded certificate.

Certain certificate usages, e.g. TLS server authentication, require the private key that
corresponds to the public key in the certificate to be present in the keystore. In such cases,
the client may indicate that it expects the device to produce a fault if the matching private key
for the uploaded certificate is not present in the keystore by setting the PrivateKeyRequired
argument in the upload request to true.

The uploaded certificate has to be linked to a key pair in the keystore.

Ifno private key is required for the public key in the certificate and a key pair exists in the
keystore with a public key equal to the public key in the certificate, the uploaded certificate is
linked to the key pair identified by the supplied key ID by adding a reference from the
certificate to the key pair.

If no private key is required for the public key in the certificate and no key pair exists with the
public key equal to the public key in the certificate, a new key pair with status ok is created
with the public key from the certificate, and this key pair is linked to the uploaded certificate
by adding a reference from the certificate to the key pair.

If a private key is required for the public key in the certificate, and a key pair exists in the
keystore with a private key that matches the public key in the certificate, the uploaded
certificate is linked to this keypair by adding a reference from the certificate to the key pair. If
a private key is required for the public key and no such keypair exists in the keystore, the
NoMatchingPrivateKey fault shall be produced and the certificate shall not be stored in the
keystore.

How the link between the uploaded certificate and a key pair is established is illustrated in
Figure 2.

Figure 2Link establishment between certificate and key pair for Upload Certificate
If the key pair that the certificate shall be linked to does not have status ok, an InvalidKeyID
fault is produced, and the uploaded certificate is not stored in the keystore.

If the device cannot process the uploaded certificate, a BadCertificate fault is produced and
neither the uploaded certificate nor the public key are stored in the device’s keystore. The
BadCertificate fault shall not be produced based on the mere fact that the device’s current

ONVIF™ – 17 – Advanced Security Service
Ver. 1.0.1

time lies outside the interval defined by the notBefore and notAfter fields as specified by [RFC
5280], Sect. 4.1 .

This operation shall not mark the uploaded certificate as trusted.

If the device does not have not enough storage capacity for storing the certificate to be
uploaded, the maximum number of certificates reached fault shall be produced and no
certificate shall be uploaded.

If the device does not have not enough storage capacity for storing the key pair that
eventually has to be created, the device shall generate a maximum number of keys reached
fault. Furthermore the device shall not generate a key pair and no certificate shall be stored.

If the command was successful, the device returns the ID of the uploaded certificate and the
ID of the key pair that contains the public key in the certificate.

A device signalling support for PKCS#10 External Certification with the
PKCS10ExternalCertificationWithRSAcapability shall support this command.

Table 8: Upload Certificate command

UploadCertificate Access Class: WRITE_SYSTEM

Message name Description

UploadCertificateRequest This message contains a request for the device to
upload a DER-encoded certificate to the keystore.

tas:Base64DERencodedASN1ValueCertificate [1][1]
xs:string Alias [0][1]
xs:boolean PrivateKeyRequired [0][1]

UploadCertificateResponse This message contains the ID of the successfully
uploaded certificate and the ID of the key pair that
contains the public key in the certificate.
tas:CertificateID CertificateID [1][1]
tas:KeyID KeyID [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:MaximumNumberOfCertificatesReached

The device does not have enough storage space to
store the certificate to be uploaded.

env:Receiver
 ter:Action
 ter:MaximumNumberOfKeysReached

The device does not have enough storage space to
store the key pair that has to be generated.

env:Sender
 ter:InvalidArgVal
 ter:BadCertificate

The supplied certificate file cannot be processed by
the device.

env:Receiver
 ter:Action
 ter:NoMatchingPrivateKey

The keystore does not contain a key pair with a private
key that matches the public key in the uploaded
certificate.

env:Sender
 ter:InvalidArgVal
 ter:UnsupportedPublicKeyAlgorithm

The public key algorithm of the public key in the
certificate is not supported by the device.

env:Sender
 ter:InvalidArgVal
 ter:UnsupportedSignatureAlgorithm

The signature algorithm that the signature of the
supplied certificate is based on is not supported by the
device.

env:Sender
 ter:InvalidArgVal
 ter:InvalidKeyStatus

The key with the requested KeyID has an
inappropriate status.

ONVIF™ – 18 – Advanced Security Service
Ver. 1.0.1

5.2.6.2.4 Get Certificate
This operation returns a specific certificate from the device’s keystore.

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the
requested certificate ID in the keystore, an InvalidArgVal fault is produced.

The certificate shall be returned in DER encoding.

It shall be noted that this command does not return the private key that is associated to the
public key in the certificate.

A device that supports the Create Self Signed Certificate command or the Upload certificate
command shall support this command.

Table 9: GetCertificate command

GetCertificate Access Class: READ_SYSTEM_SECRET

Message name Description

GetCertificateRequest This message contains a request for the device to return a certificate
from the keystore.

tas:CertificateID CertificateID [1][1]

GetCertificateResponse This message contains in DER encoding the certificate that is stored in
the keystore under the given ID.

tas:X509Certificate Certificate[1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

No certificate is stored under the requested CertificateID.

5.2.6.2.5 Get All Certificates
This operation returns the IDs of all certificates that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which certificates are present on the
device.

The certificates shall be returned in DER encoding.

If no certificate is stored in the device’s keystore, an empty list is returned.

A device that supports the Create Self Signed Certificate command or the Upload certificate
command shall support this command.

Table 10: GetAllCertificates command

GetAllCertificates Access Class: READ_SYSTEM_SECRET

Message name Description

GetAllCertificatesRequest This message contains a request for the device to return all certificates
from the keystore.

This is an empty message.

GetAllCertificatesResponse This message contains in DER encoding all certificates in the keystore
and their certificate IDs.

ONVIF™ – 19 – Advanced Security Service
Ver. 1.0.1

tas:CertificateIDCertificateID [0][unbounded]

Fault codes Description

 No command-specific fault codes.

5.2.6.2.6 Delete Certificate
This operation deletes a certificate from the device’s keystore.

The operation shall not delete the public key that is contained in the certificate from the
keystore.

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the
requested certificate ID in the keystore, an InvalidArgVal fault is produced. If there is a
certificate under the requested certificate ID stored in the keystore and the certificate could
not be deleted, a CertificateDeletion fault is produced.

If a reference exists for the specified certificate, the certificate shall not be deleted and the
corresponding fault shall be produced.

After a certificate has been successfully deleted, the device may assign its former ID to other
certificates.

A device that supports the Create Self Signed Certificate command or the Upload certificate
command shall support this command.

Table 11: DeleteCertificate command

DeleteCertificate Access Class: UNRECOVERABLE

Message name Description

DeleteCertificateRequest This message contains a request for the device to delete a certificate
from the keystore.

tas:CertificateID CertificateID [1][1]

DeleteCertificateResponse This is an empty message.

Fault codes Description

env:Receiver
 ter:Action
 ter:CertificateDeletionFailed

Deleting the certificate with the requested CertificateID failed.

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

No certificate is stored under the requested CertificateID.

env:Sender
 ter:InvalidArgVal
ter:ReferenceExists

A reference exists for the specified certificate.

5.2.6.2.7 Create Certification Path
This operation creates a sequence of certificates that may be used, e.g., for certification path
validation or for TLS server authentication.

ONVIF™ – 20 – Advanced Security Service
Ver. 1.0.1

Certification paths are uniquely identified using certification path IDs. Certificates are uniquely
identified using certificate IDs. A certification path contains a sequence of certificate IDs.

If there is a certificate ID in the sequence of supplied certificate IDs for which no certificate
exists in the device’s keystore, the corresponding fault shall be produced and no certification
path shall be created.

The signature of each certificate in the certification path except for the last one must be
verifiable with the public key contained in the next certificate in the path. If there is a
certificate ID in the request other than the last ID for which the corresponding certificate
cannot be verified with the public key in the certificate identified by the next certificate ID, an
InvalidCertificateChain fault shall be produced and no certification path shall be created.

A device signalling support for TLS via the TLSServerSupported capability shall support this
command.

Table 12: CreateCertificationPath command

CreateCertificationPath Access Class: WRITE_SYSTEM

Message name Description

CreateCertificationPathRequest This message contains a request for the device to
create a certification path.

tas:CertificateIDsCertificateIDs[1][1]
xs:string Alias [0][1]

CreateCertificationPathResponse This message contains the ID of the newly
generated certification path.

tas:CertificationPathIDCertificationPathID [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:MaximumNumberOfCertificationPathsReached

The device does not have enough storage space
to store the certification path to be created.

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

For at least one of the supplied certificate IDs,
there exists no certificate in the device’s keystore.

env:Sender
 ter:InvalidArgVal
 ter:InvalidCertificationPath

At least one certificate in the certification path is
not correctly signed with the public key in the next
certificate in the path.

env:Receiver
 ter:Action
 ter:CertificationPathCreationFailed

Creating the certification path failed.

5.2.6.2.8 Get Certification Path
This operation returns a specific certification path from the device’s keystore.

Certification paths are uniquely identified using certification path IDs. If no certification path is
stored under the requested ID in the keystore, an InvalidArgVal fault is produced.

A device signalling support for TLS via the TLSServerSupported capability shall support this
command.

ONVIF™ – 21 – Advanced Security Service
Ver. 1.0.1

Table 13: GetCertificationPath command

GetCertificationPath Access Class: READ_SYSTEM_SECRET

Message name Description

GetCertificationPathRequest This message contains a request for the device to return a certification
path from the keystore.

tas:CertificationPathID CertificationPathID [1][1]

GetCertificationPathResponse This message contains the certification path that is stored under the
given ID in the keystore.

tas:CertificationPathCertificationPath[1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificationPathID

No certification path is stored under the requested certification
path ID.

5.2.6.2.9 Get All Certification Paths
This operation returns the IDs of all certification paths that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which certificates are present on the
device.

If no certification path is stored on the device, an empty list is returned.

A device signalling support for TLS via the TLSServerSupported capability shall support this
command.

Table 14: GetAllCertificationPaths command

GetAllCertificationPaths Access Class: READ_SYSTEM_SECRET

Message name Description

GetAllCertificationPathsRequest This message contains a request for the device to return the IDs
of all certification paths in the keystore.

This is an empty message.

GetAllCertificationPathsResponse This message contains the IDs of all certification paths in the
keystore.

tas:CertificationPathIDCertificationPathID [0][unbounded]

Fault codes Description

 No command-specific fault codes.

5.2.6.2.10 Delete Certification Path
This operation deletes a certification path from the device’s keystore.

This operation shall not delete the certificates that are referenced by the certification path.

ONVIF™ – 22 – Advanced Security Service
Ver. 1.0.1

Certification paths are uniquely identified using certification path IDs. If no certification path is
stored under the requested certification path ID in the keystore, an InvalidArgVal fault is
produced. If there is a certification path under the requested certification path ID stored in the
keystore and the certification path could not be deleted, a CertificationPathDeletion fault is
produced.

If a reference exists for the specified certification path, the certification path shall not be
deleted and the corresponding fault shall be produced.

After a certification path is successfully deleted, the device may assign its former ID to other
certification paths.

A device signalling support for TLS via the TLSServerSupported capability shall support this
command.

Table 15: DeleteCertificationPath command

DeleteCertificationPath Access Class: UNRECOVERABLE

Message name Description

DeleteCertificationPathRequest This message contains a request for the device to delete a
certification path.

tas:CertificationPathID CertificationPathID[1][1]

DeleteCertificationPathRespons
e

This message is empty.

Fault codes Description

env:Receiver
 ter:Action

ter:CertificationPathDeletionFail
ed

Deleting the certification path with the requested certification path ID
failed.

env:Sender
 ter:InvalidArgVal
 ter:CertificationPathID

No certification path is stored under the requested certification path
ID.

env:Sender
 ter:InvalidArgVal
ter:ReferenceExists

A reference exists for the specified certification path.

5.3 TLS Server

5.3.1 Elements of the TLS Server
The TLS server security feature implements a TLS server as specified in [RFC 2246] and
subsequent specifications.

This specification defines how to manage the associations between certification paths and the
TLS server. All other TLS server configuration actions are outside the scope of this
specification. In particular, enabling and disabling the TLS server on the device shall be
performed using the device management service specified in the [ONVIF Core Specification].

5.3.2 TLS Server Operations

5.3.2.1 Add Server Certificate Assignment
This operation assigns a key pair and certificate along with a certification path (certificate
chain) to the TLS server on the device. The TLS server shall use this information for key
exchange during the TLS handshake, particularly for constructing server certificate messages
as specified in [RFC 4346, RFC 2246].

ONVIF™ – 23 – Advanced Security Service
Ver. 1.0.1

Certification paths are identified by their certification path IDs in the keystore. The first
certificate in the certification path must be the TLS server certificate.

Since each certificate has exactly one associated key pair, a reference to the key pair that is
associated with the server certificate is not supplied explicitly. Devices shall obtain the private
key or results of operations under the private key by suitable internal interaction with the
keystore.

If a device chooses to perform a TLS key exchange based on the supplied certification path,
it shall use the key pair that is associated with the server certificate for key exchange and
transmit the certification path to TLS clients as-is, i.e., the device shall not check
conformance of the certification path to [RFC 4346, RFC 2246].

In order to use the server certificate during the TLS handshake, the corresponding private key
is required. Therefore, if the key pair that is associated with the server certificate, i.e., the first
certificate in the certification path, does not have an associated private key, the NoPrivateKey
fault is produced and the certification path is not associated to the TLS server.

A TLS server may present different certification paths to different clients during the TLS
handshake instead of presenting the same certification path to all clients. Therefore more
than one certification path may be assigned to the TLS server. If the maximum number of
certification paths that may be assigned to the TLS server simultaneously is reached, the
device shall generate a MaximumNumberOfTLSCertificationPathsReached fault and the
requested certification path shall not be assigned to the TLS server.

A device signalling a TLS server implementation via the TLSServerSupported capability shall
support this command.

Table 16: AddServerCertificateAssignment command

AddServerCertificateAssignment Access Class:WRITE_SYSTEM

Message name Description

AddServerCertificateAssignm
entRequest

This message contains a request for the device to assign a certificate
along with a certification path to the TLS server.

tas:CertificationPathID CertificationPathID[1][1]

AddServerCertificateAssignm
entResponse

This is an empty message.

Fault codes Description

env:Receiver
 ter:InvalidArgVal
 ter:CertificationPathID

No certification path is stored in the keystore under the given
certification path ID.

env:Receiver
 ter:InvalidArgVal
 ter:NoPrivateKey

The key pair that is associated with the first certificate in the
certification path (i.e., the server certificate), does not have an
associated private key.

env: Receiver
 ter: Action

ter:MaximumNumberOfTLSC
ertificationPathsReached

The maximum number of certification paths that may be assigned to
the TLS server simultaneously is reached.

5.3.2.2 Remove Server Certificate Assignment
This operation removes a key pair and certificate assignment (including certification path) to
the TLS server on the device.

Certification paths are identified using certification path IDs. If the supplied certification path
ID is not associated to the TLS server, an InvalidArgVal fault is produced.

ONVIF™ – 24 – Advanced Security Service
Ver. 1.0.1

A device signalling a TLS server implementation via the TLSServerSupported capability shall
support this command.

Table 17: RemoveServerCertificateAssignment command

RemoveServerCertificateAssignment Access Class:WRITE_SYSTEM

Message name Description

RemoveServerCertificateAssi
gnmentRequest

This message contains a request for the device to remove a TLS
server certificate assignment along with a corresponding certification
path from the TLS server.

tas:CertificationPathID CertificationPathID[1][1]

RemoveServerCertificateAssi
gnmentResponse

This is an empty message.

Fault codes Description

env:Receiver
 ter:InvalidArgVal
 ter:OldCertificationPathID

No certification path under the given certification path ID is associated
to the TLS server.

5.3.2.3 Replace Server Certificate Assignment
This operation replaces an existing key pair and certificate assignment to the TLS server on
the device by a new key pair and certificate assignment (including certification paths).

After the replacement, the TLS server shall use the new certificate and certification path
exactly in those cases in which it would have used the old certificate and certification path.
Therefore, especially in the case that several server certificates are assigned to the TLS
server, clients that wish to replace an old certificate assignment by a new assignment should
use this operation instead of a combination of the Add TLS Server Certificate Assignment and
the Remove TLS Server Certificate Assignment operations.

Certification paths are identified using certification path IDs. If the supplied old certification
path ID is not associated to the TLS server, or no certification path exists under the new
certification path ID, the corresponding InvalidArgVal faults are produced and the associations
are unchanged.

The first certificate in the new certification path must be the TLS server certificate.

Since each certificate has exactly one associated key pair, a reference to the key pair that is
associated with the new server certificate is not supplied explicitly. Devices shall obtain the
private key or results of operations under the private key by suitable internal interaction with
the keystore.

If a device chooses to perform a TLS key exchange based on the new certification path, it
shall use the key pair that is associated with the server certificate for key exchange and
transmit the certification path to TLS clients as-is, i.e., the device shall not check
conformance of the certification path to [RFC 4346, RFC 2246].

In order to use the server certificate during the TLS handshake, the corresponding private key
is required. Therefore, if the key pair that is associated with the server certificate, i.e., the first
certificate in the certification path, does not have an associated private key, the NoPrivateKey
fault is produced and the certification path is not associated to the TLS server.

A device signalling a TLS server implementation via the TLSServerSupported capability shall
support this command.

ONVIF™ – 25 – Advanced Security Service
Ver. 1.0.1

Table 18: ReplaceServerCertificateAssignment command

ReplaceServerCertificateAssignment Access Class:WRITE_SYSTEM

Message name Description

ReplaceServerCertificateAssi
gnmentRequest

This message contains a request for the device to replace a TLS
server certificate assignment to the TLS server by a new key pair and
certificate assignment.

tas:CertificationPathID OldCertificationPathID[1][1]
tas:CertificationPathID NewCertificationPathID[1][1]

ReplaceServerCertificateAssi
gnmentResponse

This is an empty message.

Fault codes Description

env:Receiver
 ter:InvalidArgVal
 ter:OldCertificationPathID

No certification path under the given certification path ID is associated
to the TLS server.

env:Receiver
 ter:InvalidArgVal
 ter:NewCertificationPathID

No certification path is stored in the keystore under the given
certification path ID.

env:Receiver
 ter:InvalidArgVal
 ter:NoPrivateKey

The key pair that is associated with the first certificate in the new
certification path (i.e., the server certificate), does not have an
associated private key.

5.3.2.4 Get Assigned Server Certificates
This operation returns the IDs of all key pairs and certificates (including certification paths)
that are assigned to the TLS server on the device.

This operation may be used, e.g., if a client lost track of the certification path assignments on
the device.

If no certification path is assigned to the TLS server, an empty list is returned.

A device signalling a TLS server implementation via the TLSServerSupported capability shall
support this command.

Table 19: GetAssignedServerCertificates command

GetAssignedServerCertificates Access Class: READ_SYSTEM_SECRET

Message name Description

GetAssignedServerCertificates
Request

This message contains a request for the device to return the IDs of
all certification paths that are assigned to the TLS server on the
device.

This is an empty message.

GetAssignedServerCertificates
Response

This message contains the IDs of all certification paths that are
assigned to the TLS server on the device.

tas:CertificationPathIDCertificationPathID [0][unbounded]

Fault codes Description

 No command-specific fault codes.

ONVIF™ – 26 – Advanced Security Service
Ver. 1.0.1

5.4 Capabilities

5.4.1 Advanced Security Service Capabilities
The capabilities reflect optional functions and functionality of the different features in the
advanced security service. The service capabilities consist of keystore capabilities and TLS
server capabilities. The information is static and does not change during device operation.

Table 20: GetServiceCapabilitites command

GetServiceCapabilities Access Class: PRE_AUTH

Message name Description

GetServiceCapabilitiesReque
st

This is an empty message.

GetServiceCapabilitiesRespo
nse The capability response message contains the requested service

capabilities using a hierarchical XML capability structure.

tas:Capabilities Capabilities [1][1]

Fault codes Description

 No command specific faults!

5.4.2 Keystore Capabilities
The keystore capabilities reflect optional functions and functionality of the keystore on a
device. The following capabilites are available:

Table 21: Keystore Capabilities

Capability Name Capability Semantics

MaximumNumberOfKeys Indicates the maximum number of keys that
the device is able store simultaneously.

MaximumNumberOfCertificates Indicates the maximum number of certificates
that the device is able to store
simultaneously.

MaximumNumberOfCertificationPaths Indicates the maximum number of certificate
paths that the device is able to store
simultaneously.

RSAKeyPairGeneration Indicates support for on-board RSA key pair
generation.

RSAKeyLengths Indicates which RSA key lengths are
supported by the device.

PKCS10ExternalCertificationWithRSA Indicates support for creating PKCS#10
requests for RSA keys and uploading the
certificate obtained from a CA.

ONVIF™ – 27 – Advanced Security Service
Ver. 1.0.1

SelfSignedCertificateCreationWithRSA Indicates support for creating self-signed
certificates for RSA keys.

SignatureAlgorithms Indicates which signature algorithms are
supported by the device.

X.509Versions Indicates which X.509 versions are supported
by the device. 2 X.509 versions shall be
encoded as version numbers, e.g., 1, 2, 3.

5.4.3 TLS Server Capabilities
The TLS server capabilities reflect optional functions and functionality of the TLS server. The
information is static and does not change during device operation. The following capabilites
are available:

Table 22: TLS Server Capabilities

TLSServerSupported Indicates which TLS server versions are

supported by the device. Server versions
shall be encoded as version numbers, e.g.,
1.0, 1.1., 1.2.

MaximumNumberOfTLSCertificationPaths Indicates the maximum number of
certification paths that may be assigned to
the TLS server simultaneously.

2 If a device supports X.509v3 certificates, this fact shall also be signalled by this capability.

ONVIF™ – 28 – Advanced Security Service
Ver. 1.0.1

5.4.4 Capability-implied Requirements
The following table summarizes for each capability the requirements that a device signaling
this capability must satisfy.

Table 23: Requirements implied by Capabilities

Capability Implied Requirements

MaximumNumberOfKeys If greater than zero, then the following commands must be
supported:

• GetKeyStatus

• GetAllKeys

• DeleteKey

MaximumNumberOfCertifica
tes

If greater than zero, then MaximumNumberOfKeys >0 must
hold.

MaximumNumberOfCertifica
tionPaths

If greater than zero, MaximumNumberOfCertificates >=2 must
hold.

RSAKeyPairGeneration If true, the following commands must be supported:

• CreateRSAKeyPair

• GetPrivateKeyStatus

If true, the list of supported RSA key lengths as indicated by
the RSAKeyLenghts capability must not be empty.

If true, MaximumNumberOfKeys >0 must hold.

PKCS10ExternalCertificatio
nWithRSA

If true, the following operations must be supported:

• RSA key pair generation as signaled by the
RSAKeyPairGeneration capability

• Creating a CSR with the CreatePKCS10CSR command.

• Uploading the certificate created for the CSR as well as
the certificate of the created certificate’s signer with the
UploadCertificate command.

If true, SignatureAlgorithms must not be empty.

If true, MaximumNumberOfCertificates >=2 and
MaximumNumberOfCertificationPaths >0 must hold.

If true, MaximumNumberOfKeys >=2 must hold.

SelfSignedCertificateCreati
onWithRSA

If true, the following commands must be supported:

• CreateSelfSignedCertificate

• GetCertificate

ONVIF™ – 29 – Advanced Security Service
Ver. 1.0.1

• GetAllCertificates

• DeleteCertificate

If true, the following operations must be supported:

• RSA key pair generation as signaled by the
RSAKeyPairGeneration capability

If true, MaximumNumberOfCertificates > 0 must hold.

If true, SignatureAlgorithms must not be empty

TLSServerSupported If not empty, the value 1.0 must be contained in the list of
supported TLS versions.

If not empty, the following commands must be supported:

• CreateCertificationPath

• GetCertificationPath

• GetAllCertificationPaths

• DeleteCertificationPath

• AddTLSServerCertificateAssignment

• RemoveTLSServerCertificateAssignment

• ReplaceTLSServerCertificateAssignment

• GetAssignedServerCertificates

If true, MaximumNumberOfCertificationPaths >=2and
MaximumNumberOfTLSCertificationPaths >0 must hold.

TLSServerSupported and
PKCS10ExternalCertificatio
nWithRSA

If both TLSServerSupported and
PKCS10ExternalCertificationWithRSA are true,
MaximumNumberOfCertificates >=3 must hold.

MaximumNumberOfTLSCert
ificationPaths

If greater than zero, MaximumNumberOfCertificationPaths >0
must hold.

5.5 Events

5.5.1 Key Status
A device should provide information about key status changes through key status events.

Topic: tns1:Advancedsecurity/Keystore/KeyStatus
<tt:MessageDescription>

<tt:Source>
<tt:SimpleItemDescription Name="KeyID" Type="xs:KeyID"/>

</tt:Source>
<tt:Data>

<tt:SimpleItemDescription minOccurs=”0” Name="OldStatus"
Type="xs:KeyStatus">

<xs:annotation>

ONVIF™ – 30 – Advanced Security Service
Ver. 1.0.1

<xs:documentation>The old status shall be included
in the event unless NewStatus=”generating”.
</xs:documentation>

</xs:annotation>
</tt:SimpleItemDescription>
<tt:SimpleItemDescription Name="NewStatus"
Type="xs:KeyStatus"/>

</tt:Data>
</tt:MessageDescription>

5.6 Service specific data types
<xs:simpleType name="ID">
<xs:restriction base="xs:token">
<xs:annotation>
<xs:documentation>Unique identifier for objects in the key
store.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="KeyID">
<xs:restriction base="xs:ID">
<xs:annotation>
<xs:documentation>Unique identifier for keys in the key
store.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="CertificateID">
<xs:restriction base="xs:ID">
<xs:annotation>
<xs:documentation>Unique identifier for certificates in the key
store.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="CertificationPathID">
<xs:restriction base="xs:ID">
<xs:annotation>
<xs:documentation>Unique identifier for certification paths in the key
store.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="KeyStatus">
<xs:restriction base="xs:string">
<xs:enumeration value="ok">
<xs:annotation>
<xs:documentation>Key is ready for use</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="generating">
<xs:annotation>
<xs:documentation>Key is being generated</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="corrupt">
<xs:annotation>

ONVIF™ – 31 – Advanced Security Service
Ver. 1.0.1

<xs:documentation>Key has not been successfully generated and cannot be
used.</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="DotDecimalOID">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+)*">
<xs:annotation>
<xs:documentation>An object identifier (OID) in dot-decimal form as
specified in RFC4512.</xs:documentation>
</xs:annotation>
</xs:pattern>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="DNAttributeType">
<xs:restriction base="xs:string">
<xs:annotation>
<xs:documentation>The distinguished name attribute type shall be encoded as
specified in RFC 4514.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:simpleType name="DNAttributeValue">
<xs:restriction base="xs:string">
<xs:annotation>
<xs:documentation>The distinguished name attribute values shall be encoded
in hexadecimal form as specified in RFC 4514.</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
<!--===============================-->
<xs:complexType name="KeyAttribute">
<xs:sequence>
<xs:element name="KeyID" type="tas:KeyID">
<xs:annotation>
<xs:documentation>The ID of the key.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Alias" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>The alias of the key</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="hasPrivateKey" type="xs:boolean" minOccurs="0">
<xs:annotation>
<xs:documentation>Absent if the key is not a key pair. True if and only if
the key is a key pair and contains a private key. False if and only if the
key is a key pair and does not contain a private key.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="KeyStatus" type="tas:KeyStatus">
<xs:annotation>
<xs:documentation>The status of the key.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:any minOccurs=”0” maxOccurs=”unbounded” namespace="##any"
processContents="lax"/>

ONVIF™ – 32 – Advanced Security Service
Ver. 1.0.1

</xs:sequence>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>
<!--===============================-->
<xs:complexType name="DNAttributeTypeAndValue">
<xs:sequence>
<xs:element name="Type" type="tas:DNAttributeType"/>
<xs:element name="Value" type="tas:DNAttributeValue"/>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="DistinguishedName">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Country"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Organization"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="OrganizationalUnit"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded"
name="DistinguishedNameQualifier" type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="StateOrProvinceName"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="CommonName"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="SerialNumber"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Locality"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Title"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Surname"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="GivenName"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Initials"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Pseudonym"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="GenerationQualifier"
type="tas:DNAttributeValue"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="GenericAttribute"
type="tas:DNAttributeTypeAndValue"/>
<xs:element minOccurs="0" name="anyAttribute">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs=”0” maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="AlgorithmIdentifier">
<xs:sequence>
<xs:element name="algorithm" type="tas:DotDecimalOID">
<xs:annotation>
<xs:documentation>OID of the algorithm in dot-decimal
form</xs:documentation>
</xs:annotation>
</xs:element>

ONVIF™ – 33 – Advanced Security Service
Ver. 1.0.1

<xs:element minOccurs="0" name="parameters"
type="tas:Base64DERencodedASN1Value">
<xs:annotation>
<xs:documentation>Optional parameters of the algorithm</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element minOccurs="0" name="anyParameters">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs=”0” maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="BasicRequestAttribute">
<xs:annotation>
<xs:documentation>A CSR attribute as specified in RFC
2986.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="OID" type="tas:DotDecimalOID">
<xs:annotation>
<xs:documentation>The OID of the attribute.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="value" type="tas:Base64DERencodedASN1Value">
<xs:annotation>
<xs:documentation>The value of the attribute as a base64-encoded DER
representation of an ASN.1 value.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>
<!--===============================-->
<xs:complexType name="CSRAttribute">
<xs:annotation>
<xs:documentation>A CSR attribute as specified in
PKCS#10</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="X509v3Extension" type="tas:X509v3Extension">
<xs:annotation>
<xs:documentation>Extension request</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="BasicRequestAttribute" type="tas:BasicRequestAttribute">
<xs:annotation>
<xs:documentation>A basic CSR attribute.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element minOccurs="0" name="anyAttribute">
<xs:complexType>
<xs:sequence>
<xs:any minOccurs=”0” maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>

ONVIF™ – 34 – Advanced Security Service
Ver. 1.0.1

</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
<!--===============================-->
<xs:simpleType name="Base64DERencodedASN1Value">
<xs:restriction base="xs:base64Binary"/>
</xs:simpleType>
<!--===============================-->
<xs:complexType name="X509v3Extension">
<xs:annotation>
<xs:documentation>An X.509v3 extension field as specified in RFC
5280</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="extnOID" type="tas:DotDecimalOID">
<xs:annotation>
<xs:documentation>The OID of the extension field.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element default="false" name="critical" type="xs:boolean">
<xs:annotation>
<xs:documentation>True if and only if the extension is
critical.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="extnValue" type="tas:Base64DERencodedASN1Value">
<xs:annotation>
<xs:documentation>The value of the extension field as a base64-encoded DER
representation of an ASN.1 value.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="X509Certificate">
<xs:sequence>
<xs:element name="CertificateID" type="tas:CertificateID">
<xs:annotation>
<xs:documentation>The ID of the certificate</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="KeyID" type="tas:KeyID">
<xs:annotation>
<xs:documentation>The ID of the key that this certificate associates to the
certificate subject.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Alias" type="xs:string" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>The alias of the certificate</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CertificateContent" type="tas:Base64DERencodedASN1Value">
<xs:annotation>
<xs:documentation>The base64-encoded DER representation of the X.509
certificate</xs:documentation>
</xs:annotation>
</xs:element>

ONVIF™ – 35 – Advanced Security Service
Ver. 1.0.1

<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##any"
processContents="lax"/>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="CertificateIDs">
<xs:sequence>
<xs:element maxOccurs="unbounded" name="CertificateID"
type="tas:CertificateID">
<xs:annotation>
<xs:documentation>A certificate in the list of certificate
IDs</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:complexType name="CertificationPath">
<xs:sequence>
<xs:element maxOccurs="unbounded" name="CertificateID"
type="tas:CertificateID">
<xs:annotation>
<xs:documentation>A certificate in the certification
path</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Alias" type="xs:string" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>The alias of the certification path</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!--===============================-->
<xs:simpleType name="RSAKeyLengths">
<xs:list itemType="xs:int"/>
</xs:simpleType>
<xs:simpleType name="X509Versions">
<xs:list itemType="xs:int"/>
</xs:simpleType>
<xs:simpleType name="TLSVersions">
<xs:list itemType="xs:string"/>
</xs:simpleType>
<!--===============================-->
<xs:complexType name="KeystoreCapabilities">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="SignatureAlgorithms"
type="tas:AlgorithmIdentifier"/>
</xs:sequence>
<xs:attribute name="MaximumNumberOfKeys" type="xs:positiveInteger">
<xs:annotation>
<xs:documentation>Indicates the maximum number of keys that the device can
store simultaneously.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="MaximumNumberOfCertificates" type="xs:positiveInteger">
<xs:annotation>
<xs:documentation>Indicates the maximum number of certificates that the
device can store simultaneously.</xs:documentation>
</xs:annotation>
</xs:attribute>

ONVIF™ – 36 – Advanced Security Service
Ver. 1.0.1

<xs:attribute name="MaximumNumberOfCertificationPaths"
type="xs:positiveInteger">
<xs:annotation>
<xs:documentation>Indicates the maximum number of certification paths that
the device can store simultaneously.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="RSAKeyPairGeneration" type="xs:boolean">
<xs:annotation>
<xs:documentation>Indication that the device supports on-board RSA key pair
generation.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="RSAKeyLengths" type="tas:RSAKeyLengths">
<xs:annotation>
<xs:documentation>Indicates which RSA key lengths are supported by the
device.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="PKCS10ExternalCertificationWithRSA" type="xs:boolean">
<xs:annotation>
<xs:documentation>Indication support for generating PKCS#10
requests.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SelfSignedCertificateCreationWithRSA"
type="xs:boolean">
<xs:annotation>
<xs:documentation>Indication support for creating self-signed
certificates.</xs:documentation>
</xs:annotation>
</xs:attribute>

<xs:attribute name="X509Versions" type="tas:X509Versions">
<xs:annotation>
<xs:documentation>Indicates which X.509 versions are supported by the
device.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>
<!--===============================-->
<xs:complexType name="TLSServerCapabilities">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="TLSServerSupported" type="tas:TLSVersions">
<xs:annotation>
<xs:documentation>Indicates which TLS versions are supported by the
device.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="MaximumNumberOfTLSCertificationPaths"
type="xs:positiveInteger">
<xs:annotation>
<xs:documentation>Indicates the maximum number of certification paths that
may be assigned to the TLS server simultaneously.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>

ONVIF™ – 37 – Advanced Security Service
Ver. 1.0.1

<!--===============================-->
<xs:complexType name="Capabilities">
<xs:sequence>
<xs:element name="KeystoreCapabilities" type="tas:KeystoreCapabilities"/>
<xs:element name="TLSServerCapabilities" type="tas:TLSServerCapabilities"/>
<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute processContents="lax"/>
</xs:complexType>

<xs:element name="Capabilities" type="tas:Capabilities"/>

5.7 Service specific fault codes
The table below lists the advanced security service specific fault codes. Additionally, each
command can also generate a generic fault as defined in the [ONVIF Core specification].

Table 24: Advanced security service specific fault codes

Fault Code Parent Subcode Fault Reason Description

Subcode

env:Sender

ter:InvalidArgVal KeyID not
appropriate

No key is stored under the
requested KeyID. ter:KeyID

env:Sender

ter:InvalidArgVal Key type invalid The key stored in the keystore
under the requested KeyID is
of an invalid type.

ter:InvalidKeyType

env:Receiver ter:Action Deletion of a key
failed.

Deleting the key with the
requested KeyID failed. ter:KeyDeletionFailed

env:Receiver ter:Action Failure to create a
CSR

The generation of the
PKCS#10 certification request
failed.

ter:CSRCreationFailed

env:Sender

ter:InvalidArgVal Signature algorithm
not supported

The specified signature
algorithm is not supported by
the device.

ter:UnsupportedSignatureAlgo
rithm

env:Sender ter:InvalidArgVal Mismatch of key and
signature algorithm

The specified public key is an
invalid input to the specified
signature algorithm.

ter:KeySignatureAlgorithmMis
match

env:Sender ter:InvalidArgVal KeyStatus invalid The key with the requested
KeyID has an inappropriate
status.

ter:InvalidKeyStatus

env:Receiver

ter:Action Certificate creation
failed.

The generation of a certificate
failed. ter:CertificateCreationFailed

env:Receiver ter:Action Maximum number of
certificates reached

The device does not have
enough storage space to
store the certificate to be
created.

ter:MaximumNumberOfCertifi
catesReached

ter:Sender ter:InvalidArgVal X509 version not
supported

The specified X.509 version is
not supported by the device. ter:UnsupportedX509Version

env:Sender ter:InvalidArgVal Extensions not The request contains

ONVIF™ – 38 – Advanced Security Service
Ver. 1.0.1

 ter:X509VersionExtensionsMi

smatch
supported extensions that are not

supported by the X.509
version specified in the
request.

env:Receiver ter:Action Maximum number of
keys reached

The keystore does not have
enough storage space to
store the key pair that has to
be generated.

ter:
MaximumNumberOfKeysRea
ched

env:Sender ter:InvalidArgVal Certificate bad The supplied certificate
cannot be processed by the
device.

ter:BadCertificate

env:Sender

ter:InvalidArgVal Public key algorithm
not supported

The public key algorithm of
the public key in the certificate
is not supported by the
device.

ter:UnsupportedPublicKeyAlg
orithm

env:Receiver ter:Action Matching private key
not found.

The keystore does not contain
a key pair with a private key
that matches the public key in
the uploaded certificate.

ter:NoMatchingPrivateKey

env:Sender ter:InvalidArgVal CertificateID not
appropriate

No certificate is stored under
the requested CertificateID. ter:CertificateID

env:Receiver

ter:Action Deletion of a
certificate failed.

Deleting the certificate with
the requested CertificateID
failed.

ter:CertificateDeletionFailed

env:Sender ter:InvalidArgVal ReferenceExists A reference exists for the
object that is to be deleted. ter:ReferenceExists

env:Sender ter:InvalidArgVal CertificationPath
invalid

At least one certificate in the
certification path is not
correctly signed with the
public key in the next
certificate in the path.

ter:InvalidCertificationPath

env:Receiver

ter:Action Certification path
creation failed.

Creating the certification path
failed. ter:CertificationPathCreationF

ailed
env:Sender ter:InvalidArgVal Certification Path ID

invalid
No certification path is stored
under the requested
certification path ID.

ter:CertificationPathID

env:Receiver ter:Action Certification path
deletion failed

Deleting the certification path
with the requested
certification path ID failed.

ter:CertificationPathDeletionF
ailed

env:Sender

ter:InvalidArgVal The key pair does
not contain a private
key.

The key pair that is
associated with the first
certificate in the certificate
chain does not have an
associated private key.

ter:NoPrivateKey

env:Receiver ter:Action Maximum number of
certification paths
received.

The maximum number of
certification paths that may be
assigned to the TLS server
simultaneously is reached.

ter:MaximumNumberOfCertifi
cationPathsReached

env:Sender ter:InvalidArgVal Invalid old
certification path ID

No certification path under the
given old certification path ID
is associated to the TLS
server.

ter:OldCertificationPathID

env:Sender

ter:InvalidArgVal Invalid new
certification path ID

No certification path is stored
in the keystore under the
given certification path ID.

ter:NewCertificationPathID

ONVIF™ – 39 – Advanced Security Service
Ver. 1.0.1

env:Receiver

ter:Action Maximum number of
TLS certification
paths reached

The maximum number of
certification paths that may be
assigned to the TLS server
simultaneously is reached.

ter:
MaximumNumberOfTLSCertifi
cationPathsReached

5.8 Protocol Options
This section summarizes in Table 25 mandatory configurations of cryptographic protocols that
are used by the ONVIF advanced security service.

Table 25 Configuration options of cryptographic protocols
Operation Protocol Mandatory configuration options

CreatePKCS10CSR PKCS#10 sha-1WithRSAEncryption

CreateSelfSignedCertificate X.509v3 sha-1WithRSAEncryption

UploadCertificate X.509v3 sha-1WithRSAEncryption

6 Security Considerations

This section is informative.

• Faults and their types shall not disclose sensitive information to an attacker that he
could not obtain otherwise.

• For interoperability reasons, sha1WithRSAEncryption as specified in [RFC3279] is
mandated as default signature algorithm. However, since the security of the SHA-1
algorithm is under question, it is strongly recommended that newer implementations of
this specification support a signature algorithm based on SHA-256, e.g.,
sha256WithRSAEncryption as specified in [RFC 4055].

• Operations with arguments that need protection against eavesdropping or
manipulation shall only be executed over sufficiently protected communication
channels.

• It is good practice not to use the same key for different purposes. In order to prevent
the device from using the same key for different purposes unnoticedly, this
specification mandates that all keys in the keystore to distinct.

7 Design Rationale

This section is informative.

7.1 General Design Goals
The Advanced Security Service is designed for modularity and extensibility. Therefore, each
security feature is encapsulated in a separate port type within the service. Later revisions of
this specification may add port types to enhance the Advanced Security Service by additional
security features.

Within a security feature, capabilities indicate support for sub-features and configuration
options. Later revisions of this specification may add additional sub-featuresto existing
features and identify them by additional capabilities.

Port types and capabilities enable devices to support well-defined subsets of this specification
and to communicate this information to clients effectively.

ONVIF™ – 40 – Advanced Security Service
Ver. 1.0.1

7.2 Keystore
The keystore design is based on the rationale that an RSA key pair is a special type of key
pair and a key pair is a special type of key. Therefore, key-related operations in the keystore
deliberately refer to the most generic possible type in this hierarchy. For example, the
DeleteKey operation (see Sect. 5.2.6.1.5) refers to a key instead of a key pair or even an
RSAKeyPair because it is applicable to all keys. On the other hand, the GetPrivateKeyStatus
command refers to a key pair instead of a key, since this command is not meaningful for a key
that is not a key pair, e.g., a symmetric key.

While this revision of the keystore specification only supports RSA key pairs as key pairs,
later revisions of this specification may add other types of key pairs or symmetric keys as
special types of keys.

Some interactions with the keystore, e.g., retrieving the private key for a public key that is
contained in a certificate, are required device internally, but need not be accessible to clients
and may even, as in the above example, imply a security risk when made available outside
the device. Such operations are therefore deliberately omitted from this specification.

7.3 TLS Server
This revision of the Advanced Security Service Specification allows to manage assignments of
certification paths to the TLS server on a device. It is permitted that a TLS server presents
different certification paths to different clients, therefore more than one certification path may
be assigned simultaneously to the TLS server to use as a server certificate.

All other configuration of the TLS server on a device is outside the scope of this specification
revision and may be addressed by later revisions of this document.

ONVIF™ – 41 – Advanced Security Service
Ver. 1.0.1

Annex A. Revision History

Rev. Date Editor Changes

1.0 Aug - 2013 Dirk Stegemann Initial version

1.0.1 Dec - 2013 Michio Hirai,
Dirk Stegemann

Change Request 1219, 1220
1222, 1267, 1271, 1272, 1277

	1 Scope
	2 Normative references
	3 Terms and Definitions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Namespace

	4 Overview
	5 Advanced Security Service
	5.1 General Structure
	5.2 Keystore
	5.2.1 Elements of the Keystore
	5.2.2 Unique Identifiers
	5.2.3 Uniqueness of Objects in the Keystore
	5.2.4 Referential Integrity
	5.2.5 Key Status
	5.2.6 Keystore Operations
	5.2.6.1 Key Management
	5.2.6.1.1 Create RSA Key Pair
	5.2.6.1.2 Get Key Status
	5.2.6.1.3 Get Private Key Status
	5.2.6.1.4 Get All Keys
	5.2.6.1.5 Delete Key

	5.2.6.2 Certificate Management
	5.2.6.2.1 Create PKCS#10 Certification Request
	5.2.6.2.2 Create Self-Signed Certificate
	5.2.6.2.3 Upload Certificate
	5.2.6.2.4 Get Certificate
	5.2.6.2.5 Get All Certificates
	5.2.6.2.6 Delete Certificate
	5.2.6.2.7 Create Certification Path
	5.2.6.2.8 Get Certification Path
	5.2.6.2.9 Get All Certification Paths
	5.2.6.2.10 Delete Certification Path

	5.3 TLS Server
	5.3.1 Elements of the TLS Server
	5.3.2 TLS Server Operations
	5.3.2.1 Add Server Certificate Assignment
	5.3.2.2 Remove Server Certificate Assignment
	5.3.2.3 Replace Server Certificate Assignment
	5.3.2.4 Get Assigned Server Certificates

	5.4 Capabilities
	5.4.1 Advanced Security Service Capabilities
	5.4.2 Keystore Capabilities
	5.4.3 TLS Server Capabilities
	5.4.4 Capability-implied Requirements

	5.5 Events
	5.5.1 Key Status

	5.6 Service specific data types
	5.7 Service specific fault codes
	5.8 Protocol Options

	6 Security Considerations
	7 Design Rationale
	7.1 General Design Goals
	7.2 Keystore
	7.3 TLS Server

	Annex A. Revision History

