
ONVIF™ – 1 – ONVIF Core Spec. – Ver. 2.1.1

ONVIF™
Core Specification

Version 2.1.1
January, 2012

ONVIF™ – 2 – ONVIF Core Spec. – Ver. 2.1.1

 2008-2012 by ONVIF: Open Network Video Interface Forum Inc.. All rights reserved.
Recipients of this document may copy, distribute, publish, or display this document so long as this
copyright notice, license and disclaimer are retained with all copies of the document. No license is
granted to modify this document.
THIS DOCUMENT IS PROVIDED "AS IS," AND THE CORPORATION AND ITS MEMBERS AND
THEIR AFFILIATES, MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.
IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS
DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES
WERE REASONABLY FORESEEABLE, AND ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THIS DOCUMENT. THE FOREGOING DISCLAIMER AND LIMITATION ON
LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS AND WARRANTIES
MADE BY THE MEMBERS AND THEIR RESPECTIVE AFFILIATES TO THE CORPORATION AND
OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE CORPORATION.

ONVIF™ – 3 – ONVIF Core Spec. – Ver. 2.1.1

CONTENTS

1 Scope 9

2 Normative references 10

3 Terms and Definitions 11

3.1 Definitions..11

3.2 Abbreviations ..12

4 Overview 14

4.1 Web Services ..14

4.2 IP configuration ...15

4.3 Device discovery ...15

4.4 Profiles ..15

4.5 Device management ...16
4.5.1 Capabilities ...16
4.5.2 Network...16
4.5.3 System..17
4.5.4 Retrieval of System Information..17
4.5.5 Firmware Upgrade ..17
4.5.6 System Restore ..18
4.5.7 Security ...18

4.6 Event handling ..18

4.7 Security ...18

5 Web Services framework 20

5.1 Services overview ...20
5.1.1 Services requirements ..20

5.2 WSDL overview...21

5.3 Namespaces ...21

5.4 Types...22

5.5 Messages..23

5.6 Operations...23
5.6.1 One-way operation type..24
5.6.2 Request-response operation type...25

5.7 Port Types...25

5.8 Binding ..26

5.9 Ports ..26

5.10 Services...26

5.11 Error handling..26
5.11.1 Protocol errors ..26
5.11.2 SOAP errors ...27

5.12 Security ...30
5.12.1 User-based access control...31
5.12.2 Username token profile ..33

6 IP configuration 35

7 Device discovery 36

ONVIF™ – 4 – ONVIF Core Spec. – Ver. 2.1.1

7.1 General..36

7.2 Modes of operation ...36

7.3 Discovery definitions ...36
7.3.1 Endpoint reference ...36
7.3.2 Hello..37
7.3.3 Probe and Probe Match..39
7.3.4 Resolve and Resolve Match ...39
7.3.5 Bye..39
7.3.6 SOAP Fault Messages ...39

7.4 Remote discovery extensions ...40
7.4.1 Network scenarios ..40
7.4.2 Discover proxy ..42
7.4.3 Remote Hello and Probe behaviour..43
7.4.4 Client behaviour..44
7.4.5 Security ...45

8 Device management 47

8.1 Capabilities..47
8.1.1 Get WSDL URL...47
8.1.2 Capability exchange ...47

8.2 Network ...52
8.2.1 Get hostname ...52
8.2.2 Set hostname..52
8.2.3 Set hostname from DHCP ..53
8.2.4 Get DNS settings ..53
8.2.5 Set DNS settings ..54
8.2.6 Get NTP settings ..54
8.2.7 Set NTP settings...55
8.2.8 Get dynamic DNS settings..56
8.2.9 Set dynamic DNS settings ..56
8.2.10 Get network interface configuration..57
8.2.11 Set network interface configuration ..58
8.2.12 Get network protocols ..59
8.2.13 Set network protocols...60
8.2.14 Get default gateway..60
8.2.15 Set default gateway..61
8.2.16 Get zero configuration ..61
8.2.17 Set zero configuration ..61
8.2.18 Get IP address filter..62
8.2.19 Set IP address filter ..62
8.2.20 Add an IP filter address ..63
8.2.21 Remove an IP filter address ...64
8.2.22 IEEE 802.11 configuration..65

8.3 System ..69
8.3.1 Device Information..69
8.3.2 Get System URIs ..69
8.3.3 Backup ..70
8.3.4 Restore ...70
8.3.5 Start system restore..71
8.3.6 Get system date and time...72
8.3.7 Set system date and time ...72
8.3.8 Factory default ..73
8.3.9 Firmware upgrade...74
8.3.10 Start firmware upgrade...75
8.3.11 Get system logs..75
8.3.12 Get support information..76
8.3.13 Reboot ..77
8.3.14 Get scope parameters..77

ONVIF™ – 5 – ONVIF Core Spec. – Ver. 2.1.1

8.3.15 Set scope parameters ..78
8.3.16 Add scope parameters ...78
8.3.17 Remove scope parameters ..78
8.3.18 Get discovery mode..79
8.3.19 Set discovery mode..79
8.3.20 Get remote discovery mode ...80
8.3.21 Set remote discovery mode..80
8.3.22 Get remote DP addresses..81
8.3.23 Set remote DP addresses ..81

8.4 Security ...82
8.4.1 Get access policy..82
8.4.2 Set access policy ..82
8.4.3 Get users ..83
8.4.4 Create users ...83
8.4.5 Delete users..84
8.4.6 Set users settings ...84
8.4.7 IEEE 802.1X configuration..85
8.4.8 Create self-signed certificate ..89
8.4.9 Get certificates..90
8.4.10 Get CA certificates..90
8.4.11 Get certificate status...91
8.4.12 Set certificate status ...91
8.4.13 Get certificate request ..91
8.4.14 Get client certificate status ...92
8.4.15 Set client certificate status..93
8.4.16 Load device certificate..93
8.4.17 Load device certificates in conjunction with its private key94
8.4.18 Get certificate information request ...95
8.4.19 Load CA certificates ...95
8.4.20 Delete certificate...96
8.4.21 Get remote user..96
8.4.22 Set remote user ..97
8.4.23 Get endpoint reference...98

8.5 Input/Output (I/O) ..98
8.5.1 Get relay outputs ..98
8.5.2 Set relay output settings ...98
8.5.3 Trigger relay output...99
8.5.4 Auxiliary operation ..100

8.6 Service specific fault codes...100

9 Event handling 107

9.1 Basic Notification Interface..107
9.1.1 Introduction ...107
9.1.2 Requirements..108

9.2 Real-time Pull-Point Notification Interface ..109
9.2.1 Create pull point subscription ...111
9.2.2 Pull messages...111

9.3 Notification Streaming Interface..112

9.4 Properties..112
9.4.1 Property Example ...112

9.5 Notification Structure...113
9.5.1 Notification information ...113
9.5.2 Message Format...114
9.5.3 Property example, continued..115
9.5.4 Message Description Language ...117
9.5.5 Message Content Filter...118

9.6 Synchronization Point ...119

ONVIF™ – 6 – ONVIF Core Spec. – Ver. 2.1.1

9.7 Topic Structure..120
9.7.1 ONVIF Topic Namespace...120
9.7.2 Topic Type Information ...121
9.7.3 Topic Filter ..121

9.8 Get event properties..122

9.9 Capabilities..123

9.10 SOAP Fault Messages..124

9.11 Notification example..124
9.11.1 GetEventPropertiesRequest...124
9.11.2 GetEventPropertiesResponse..124
9.11.3 CreatePullPointSubscription...125
9.11.4 CreatePullPointSubscriptionResponse ..126
9.11.5 PullMessagesRequest..127
9.11.6 PullMessagesResponse...127
9.11.7 UnsubscribeRequest ..128
9.11.8 UnsubscribeResponse ...129

9.12 Service specific fault codes...129

10 Security 129

10.1 Transport level security ...129
10.1.1 Supported cipher suites..130
10.1.2 Server authentication ...130
10.1.3 Client authentication...130

10.2 Message level security..131

10.3 IEEE 802.1X..132

Annex A. Notification topics 133

A.1 Media configuration topics ..133
A.1.1 Profile..133
A.1.2 VideoSourceConfiguration..133
A.1.3 AudioSourceConfiguration..133
A.1.4 VideoEncoderConfiguration..134
A.1.5 AudioEncoderConfiguration..134
A.1.6 VideoAnalyticsConfiguration...134
A.1.7 PTZConfiguration..134
A.1.8 MetaDataConfiguration...134
A.1.9 Device management topics ..134
A.1.10 Relay ..135
A.1.11 PTZ Controller Topics...135

Annex B. Capability List of GetCapabilities 136

Annex C. Bibliography 141

Annex D. Revision History 143

ONVIF™ – 7 – ONVIF Core Spec. – Ver. 2.1.1

Contributors

Version 1

Christian Gehrmann

(Ed.)
Axis Communications AB

Mikael Ranbro Axis Communications AB

Johan Nyström Axis Communications AB

Ulf Olsson Axis Communications AB

Göran Haraldsson Axis Communications AB

Daniel Elvin Axis Communications AB

Hans Olsen Axis Communications AB

Martin Rasmusson Axis Communications AB

Stefan Andersson
(co Ed.)

Axis Communications AB

Alexander Neubeck Bosch Security Systems

Susanne Kinza Bosch Security Systems

Markus Wierny Bosch Security Systems

Rainer Bauereiss Bosch Security Systems

Masashi Tonomura
(co Ed.)

Sony Corporation

Norio Ishibashi Sony Corporation

Yoichi Kasahara

Sony Corporation

Yoshiyuki Kunito Sony Corporation

Version 2

Toshihiro Shimizu Panasonic

Manabu Nakamura Panasonic

Hasan Timucin Ozdemir Panasonic

Hiroaki Ootake Panasonic

Young Hoon OK ITX

Sekrai Hong Samsung

Gero Bäse Siemens

Michio Hirai Sony Corporation

Akihiro Hokimoto Sony Corporation

Kazunori Sakaki Sony Corporation

Masashi Tonomura Sony Corporation

Stefan Andersson Axis Communications AB

Christian Gehrmann Axis Communications AB

Willy Sagefalk Axis Communications AB

Mikael Ranbro Axis Communications AB

Ted Hartzell Axis Communications AB

Rainer Bauereiss Bosch Security Systems

Hans Busch
(Ed.)

Bosch Security Systems

Susanne Kinza
(co Ed.)

Bosch Security Systems

Dieu Thanh Nguyen Bosch Security Systems

Antonie van Woerdekom Bosch Security Systems

Shinichi Hatae Canon Inc

Takahiro Iwasaki Canon Inc

Takeshi Asahi Hitachi Ltd

Colin Caughie IndigoVision Ltd

Heather Logan IndigoVision Ltd

ONVIF™ – 8 – ONVIF Core Spec. – Ver. 2.1.1

INTRODUCTION

The goal of this specification is to provide the common base for a fully interoperable network
implementation comprised of products from different network vendors. This standard
describes the network model, interfaces, data types and data exchange patterns. The
standard reuses existing relevant standards where available, and introduces new
specifications only where necessary.

This is the ONVIF core specification. It is accompanied by a set of computer readable
interface definitions:

 ONVIF Schema [ONVIF Schema]

 ONVIF Device Service WSDL [ONVIF DM WSDL]

 ONVIF Event Service WSDL [ONVIF Event WSDL]

 ONVIF Topic Namespace XML [ONVIF Topic Namespace]

The purpose of this document is to define the ONVIF specification framework, and is divided
into the following sections:

Specification Overview: Gives an overview of the different specification parts and how they
are related to each other.

Web Services Frame Work: Offers a brief introduction to Web Services and the Web Services
basis for the ONVIF specifications.

IP Configuration: Defines the ONVIF network IP configuration requirements.

Device Discovery: Describes how devices are discovered in local and remote networks.

Device Management: Defines the configuration of basics like network and security related
settings.

Event Handling: Defines how to subscribe to and receive notifications (events) from a device.

Security Section: Defines the transport and message level security requirements on ONVIF
compliant implementations.

ONVIF™ – 9 – ONVIF Core Spec. – Ver. 2.1.1

1 Scope

This specification defines procedures for communication between network clients and devices.
This new set of specifications makes it possible to build e.g. network video systems with
devices and receivers from different manufacturers using common and well defined interfaces.
The functions defined in this specification covers discovery, device management and event
framework.

Supplementary dedicated services as e.g. media configuration, real-time streaming of audio
and video, Pan, Tilt and Zoom (PTZ) control, video analytics as well as control, search and
replay of recordings are defined in separate documents.

The management and control interfaces defined in this standard are described as Web
Services. This standard also contains full XML schema and Web Service Description
Language (WSDL) definitions.

In order to offer full plug-and-play interoperability, the standard defines procedures for device
discovery. The device discovery mechanisms in the standard are based on the WS-Discovery
specification with extensions.

ONVIF™ – 10 – ONVIF Core Spec. – Ver. 2.1.1

2 Normative references

RSA Laboratories, PKCS #10 v1.7: Certification Request Syntax Standard, RSA Laboratories

<ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-10/pkcs-10v1_7.pdf>

FIPS 180-2, SECURE HASH STANDARD

<http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>

IEEE 1003.1, The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition

< http://pubs.opengroup.org/onlinepubs/009695399/>

IETF RFC 2131, Dynamic Host Configuration Protocol

<http://www.ietf.org/rfc/rfc2131.txt>

IETF RFC 2136, Dynamic Updates in the Domain Name System (DNS UPDATE)

<http://www.ietf.org/rfc/rfc2136.txt>

IETF RFC 2246, The TLS Protocol Version 1.0

<http://www.ietf.org/rfc/rfc2246.txt>

IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1

<http://www.ietf.org/rfc/rfc2616.txt>

IETF RFC 2617, HTTP Authentication: Basic and Digest Access Authentication

<http://www.ietf.org/rfc/rfc2617.txt>

IETF RFC 2782, A DNS RR for specifying the location of services (DNS SRV)

<http://www.ietf.org/rfc/rfc2782.txt>

IETF RFC 2818, HTTP over TLS

<http://www.ietf.org/rfc/rfc2818.txt>

IETF RFC 3268, Advanced Encryption Standard (AES) Cipher suites for Transport Layer Security (TLS)

<http://www.ietf.org/rfc/rfc3268.txt>

IETF RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

<http://www.ietf.org/rfc/rfc3315.txt>

IETF RFC 3548, The Base16, Base32, and Base64 Data Encodings

<http://www.ietf.org/rfc/rfc3548.txt>

IETF RFC 3927, Dynamic Configuration of IPv4 Link-Local Addresses

<http://www.ietf.org/rfc/rfc3927.txt>

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

<http://www.ietf.org/rfc/rfc3986.txt>

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace

<http://www.ietf.org/rfc/rfc4122.txt>

IETF RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1

<http://www.ietf.org/rfc/rfc4346.txt>

IETF 4702, The Dynamic Host Configuration Protocol (DHCP) Client Fully Qualified Domain Name (FQDN)
Option

<http://www.ietf.org/rfc/rfc4702.txt>

IETF 4861, Neighbor Discovery for IP version 6 (IPv6)

<http://www.ietf.org/rfc/rfc4861.txt>

IETF 4862, IPv6 Stateless Address Auto configuration

<http://www.ietf.org/rfc/rfc4862.txt>

IETF 5246, The Transport Layer Security (TLS) Protocol Version 1.2

<http://www.ietf.org/rfc/rfc5246.txt>

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-10/pkcs-10v1_7.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2782.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc3927.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4702.txt
http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/rfc/rfc5246.txt

ONVIF™ – 11 – ONVIF Core Spec. – Ver. 2.1.1

W3C SOAP Message Transmission Optimization Mechanism,

<http://www.w3.org/TR/soap12-mtom/>

W3C SOAP 1.2, Part 1, Messaging Framework

<http://www.w3.org/TR/soap12-part1/>

W3C SOAP Version 1.2 Part 2: Adjuncts (Second Edition)

<http://www.w3.org/TR/2007/REC-soap12-part2-20070427/>

W3C Web Services Addressing 1.0 – Core

<http://www.w3.org/TR/ws-addr-core/>

WS-I Basic Profile Version 2.0

< http://www.ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html>

OASIS Web Services Base Notification 1.3

<http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf>

XMLSOAP, Web Services Dynamic Discovery (WS-Discovery)”, J. Beatty et al., April 2005.

<http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf>

OASIS Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)

<http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf>

OASIS Web Services Topics 1.3

<http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf>

OASIS Web Services Security UsernameToken Profile 1.0

<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf>

W3C Web Services Description Language (WSDL) 1.1

<http://www.w3.org/TR/wsdl>

W3C XML Schema Part 1: Structures Second Edition

<http://www.w3.org/TR/xmlschema-1/>

W3C XML Schema Part 2: Datatypes Second Edition

<http://www.w3.org/TR/xmlschema-2/>

W3C XML-binary Optimized Packaging

<http://www.w3.org/TR/2005/REC-xop10-20050125/>

IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

<http://standards.ieee.org/getieee802/download/802.11-2007.pdf>

IEEE 802.1X, Port-Based Network Access Control

<http://standards.ieee.org/getieee802/download/802.1X-2004.pdf>

3 Terms and Definitions

3.1 Definitions

Ad-hoc network Often used as a vernacular term for an independent basic service set, as defined in
[IEEE 802.11-2007].
A set of IEEE802.11 stations that have successfully joined in a common network,
see [IEEE 802.11-2007].

Basic Service Set

Capability The capability commands allows a client to ask for the services provided

An IEEE 802.11 network that includes an access point, as defined in [IEEE 802.11-
2007].

by a device.

Infrastructure network

PKCS Refers to a group of Public Key Cryptography Standards devised and published by
RSA Security.

Pre Shared Key A static key that is distributed to the device.

http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/
http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf

ONVIF™ – 12 – ONVIF Core Spec. – Ver. 2.1.1

PullPoint Resource for pulling messages. By pulling messages, notifications are not blocked by
firewalls.

Remote Discovery
Proxy (Remote DP)

The remote DP allows a device to register at the remote DP and at the client to find
registered devices through the remote DP even if the client and device resides in
different administrative network domains.

Service Set ID The identity of an [IEEE 802.11-2007] wireless network.

Wi-Fi Protected Access A certification program created by the Wi-Fi Alliance to indicate compliance with the
security protocol covered by the program.

3.2 Abbreviations

ASN Abstract Syntax Notation
BSSID Basic Service Set Identification
CA Certificate Authority
CBC Cipher-Block Chaining
CCMP Counter mode with Cipher-block chaining Message authentication code Protocol
DER Distinguished Encoding Rules
DHCP Dynamic Host Configuration Protocol
DM Device Management
DNS Domain Name Server
DP Discovery Proxy
GW Gateway
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol over Secure Socket Layer
IO, I/O Input/Output
IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
MTOM Message Transmission Optimization Mechanism
NAT Network Address Translation
NFC Near Field Communication
NTP Network Time Protocol
OASIS Organization for the Advancement of Structured Information Standards
ONVIF Open Network Video Interface Forum
POSIX Portable Operating System Interface
PKCS Public Key Cryptography Standards
PSK Pre Shared Key
PTZ Pan/Tilt/Zoom
REL Rights Expression Language
RSA Rivest ,Sharmir and Adleman
SAML Security Assertion Markup Language
SHA Secure Hash Algorithm
SOAP Simple Object Access Protocol
SSID Service Set ID
TCP Transmission Control Protocol
TLS Transport Layer Security
TKIP Temporal Key Integrity Protocol
TTL Time To Live
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol
URI Uniform Resource Identifier
URN Uniform Resource Name
USB Universal Serial Bus
UTC Coordinated Universal Time
UTF Unicode Transformation Format
UUID Universally Unique Identifier
WDR Wide Dynamic Range
WPA Wi-Fi Protected Access
WS Web Services
WSDL Web Services Description Language
WS-I Web Services Interoperability

ONVIF™ – 13 – ONVIF Core Spec. – Ver. 2.1.1

XML eXtensible Markup Language

ONVIF™ – 14 – ONVIF Core Spec. – Ver. 2.1.1

4 Overview

This specification originated from network video use cases covering both local and wide area
network scenarios and has been extended to cover generic IP device use cases. The
specification defines a core set of interface functions for configuration and operation of
network devices by defining their server side interfaces.

This standard covers device discovery, device configuration as well as an event framework.

All services share a common XML schema and all data types are provided in [ONVIF Schema].
The different services are defined in the respective sections and service WSDL documents.

4.1 Web Services

The term Web Services is the name of a standardized method of integrating applications
using open, platform independent Web Services standards such as XML, SOAP 1.2 [Part 1]
and WSDL1.1 over an IP network. XML is used as the data description syntax, SOAP is used
for message transfer and WSDL is used for describing the services.

This framework is built upon Web Services standards. All configuration services defined in the
standard are expressed as Web Services operations and defined in WSDL with HTTP as the
underlying transport mechanism.

Figure 1: Web Services based development principles

Figure 1 gives an overview of the basic principles for development based on Web Services.
The service provider (device) implements the ONVIF service or services. The service is
described using the XML-based WSDL. Then, the WSDL is used as the basis for the service
requester (client) implementation/integration. Client-side integration is simplified through the
use of WSDL compiler tools that generate platform specific code that can be used by the
client side developer to integrate the Web Service into an application.

ONVIF™ – 15 – ONVIF Core Spec. – Ver. 2.1.1

The Web Service provider and requester communicate using the SOAP message exchange
protocol. SOAP is a lightweight, XML-based messaging protocol used to encode the
information in a Web Service request and in a response message before sending them over a
network. SOAP messages are independent of any operating system or protocol and may be
transported using a variety of Internet protocols. This ONVIF standard defines conformant
transport protocols for the SOAP messages for the described Web Services.

The Web Service overview section introduces into the general ONVIF service structure, the
command definition syntax in the specification, error handling principles and the adopted Web
Service security mechanisms.

To ensure interoperability, all ONVIF services follow the Web Services Interoperability
Organization (WS-I) basic profile 2.0 recommendations and use the document/literal wrapped
pattern.

4.2 IP configuration

The IP configuration section defines the IP configuration compliance requirements and
recommendations. IP configuration includes:

 IP network communication capability

 Static IP configuration

 Dynamic IP configuration

4.3 Device discovery

The configuration interfaces defined in this standard are Web Services interfaces that are
based on the WS-Discovery standard. This use of this standard makes it possible to reuse a
suitable existing Web Service discovery framework, instead of requiring a completely new
service or service addressing definition.

This standard introduces a specific discovery behaviour suitable for e.g. video surveillance
purposes. For example, a fully interoperable discovery requires a well defined service
definition and a service searching criteria. The specification covers device type and scopes
definitions in order to achieve this.

A successful discovery provides the device service address. Once a client has the device
service address it can receive detailed device information through the device service, see
section 4.5 below.

In addition to the standard web services discovery protocol this specification supports remote
discovery proxies to find registered devices through the remote discovery proxy even if the
client and the device reside in different administrative network domains.

4.4 Profiles

Device functionality can be grouped to so called profiles. The profiles themselves are defined
in separate specifications.

For each profile a number of services and functions are mandatory which are defined in the
respective specifications.

ONVIF™ – 16 – ONVIF Core Spec. – Ver. 2.1.1

4.5 Device management

Device management functions are handled through the device service. The device service is
the entry point to all other services provided by a device. WSDL for the device service is
provided in in the Device Management WSDL file. The device management interfaces consist
of these subcategories:

 Capabilities

 Network

 System

 Security

4.5.1 Capabilities

The capability commands allow a client to ask for the services provided by a device and to
determine which general and vendor specific services are offered by the device. The
capabilities are structured per service. This document defines the capability exchange for the
device and the event service. For the other services refer to the respective service
specification:

 Device

o Network

o System

o Security

 Event

The capabilities for the different categories indicate those commands and parameter settings
that are available for the particular service or service subcategory.

4.5.2 Network

The following set of network commands allows standardized management of functions:

 Get and set hostname.

 Get and set DNS configurations.

 Get and set NTP configurations.

 Get and set dynamic DNS.

 Get and set network interface configurations.

 Enable/disable and list network protocols.

 Get and set default gateway.

ONVIF™ – 17 – ONVIF Core Spec. – Ver. 2.1.1

 Get and set zero configuration.

 Get, set, add and delete IP address filter.

 Wireless network interface configuration

4.5.3 System

The system commands are used to manage the following device system settings:

 Get device information.

 Make system backups.

 Get and set system date and time.

 Factory default reset.

 Upgrade firmware.

 Get system log.

 Get device diagnostics data (support information).

 Reboot.

 Get and set device discovery parameters.

4.5.4 Retrieval of System Information

System Information, such as system logs, vendor-specific support information and
configuration backup images, may be retrieved using either MTOM or HTTP.

The MTOM method is supported by the GetSystemLog, GetSystemSupportInformation and
GetSystemBackup commands. The HTTP method is supported by the GetSystemUris
command; this retrieves URIs from which the files may be downloaded using an HTTP GET
operation.

4.5.5 Firmware Upgrade

Two mechanisms are provided for upgrading the firmware on a device. The first uses the
UpgradeSystemFirmware command to send the new firmware image using MTOM.

The second is a two stage process; first the client sends the StartFirmwareUpgrade command
to instruct the device to prepare for upgrade, then it sends the firmware image using HTTP
POST.

The HTTP method is designed for resource-limited devices that may not be capable of
receiving a new firmware image in its normal operating state.

ONVIF™ – 18 – ONVIF Core Spec. – Ver. 2.1.1

4.5.6 System Restore

The System Restore capability allows a device’s configuration to be restored from a backup
image. Again two mechanisms are provided. The first uses the RestoreSystem command to
send the backup image using MTOM. The second uses the StartSystemRestore command
followed by an HTTP POST operation to send the backup image.

4.5.7 Security

The following security operations are used to manage the device security configurations:

 Get and set access security policy.

 Handle user credentials and settings.

 Handle HTTPS server certificates.

 Enable/disable HTTPS client authentication.

 Key generation and certificate download functions.

 Handle IEEE 802.1X supplicant certificate

 Handle IEEE 802.1X CA certificate

 IEEE 802.1X configuration

4.6 Event handling

Event handling is based on the OASIS WS-BaseNotification and WS-Topics specifications.
These specifications allow the reuse of a rich notification framework without the need to
redefine event handling principles, basic formats and communication patterns.

Firewall traversal, according to WS-BaseNotification, is handled through a PullPoint
notification pattern. This pattern, however, does not allow real-time notification. Hence, this
specification defines an alternative PullPoint communication pattern and service interface.
The PullPoint pattern allows a client residing behind a firewall to receive real-time
notifications while utilizing the WS-BaseNotification framework.

A fully standardized event requires standardized notifications. However, the notification topics
will, to a large extent, depend on the application needs. This specification defines a set of
basic notification topics that a device is recommended to support, see Appendix A. In addition,
for some services, this specification extends the basic notification topics with mandatory
events.

WSDL for the event service including extensions is provided in the Event WSDL file.

4.7 Security

This clause describes network security requirements. This specification defines security
mechanism on two different communication levels:

 Transport-level security

ONVIF™ – 19 – ONVIF Core Spec. – Ver. 2.1.1

 Message-level security

This specification also defines port-based network security as follows.

 IEEE 802.1X

The general security requirements, definitions and transport security requirements are
specified in 10. Message level security requirements are specified in 5.12. IEEE 802.1X
requirements are specified in Section 8.4.7 Security management is handled through the
device management service as listed above in 4.5.7.

ONVIF™ – 20 – ONVIF Core Spec. – Ver. 2.1.1

5 Web Services framework

All management and configuration commands are based on Web Services.

For the purpose of this standard:

 The device is a service provider.

 The client is a service requester.

A typical ONVIF network system does have multiple clients that handle device configuration
and device management operations for numerous devices. Additionally a device providing
services may also act as a client.

Web Services also require a common way to discover service providers. This discovery is
achieved using the Universal Discovery, Description and Integration Registry (UDDI)
specifications [UDDI API ver2], [UDDI Data Structure ver2]. The UDDI specifications utilize
service brokers for service discovery. This specification targets devices while the UDDI model
is not device oriented. Consequently, UDDI and service brokers are outside the scope of this
specification.

According to this specification, devices (service providers) are discovered using WS-
Discovery [WS-Discovery] based techniques. The service discovery principles are described
in section 7.

Web Services allow developers the freedom to define services and message exchanges,
which may cause interoperability problems. The Web Services interoperability organization
(WS-I) develops standard profiles and guidelines to create interoperable Web Services. The
devices and the clients shall follow the guidelines in the WS-I Basic Profile 2.0 [WS-I BP 2.0].
The service descriptions in the ONVIF specification follow the WS-I Basic Profile 2.0
recommendations.

5.1 Services overview

An ONVIF compliant device shall support a number of Web Services which are defined in this
and related specifications.

The device management service is the entry point for all other services of the device and
therefore also the target service for the ONVIF defined WS-Discovery behaviour, see 7.

The entry point for the device management service is fixed to:

http://onvif_host/onvif/device_service

5.1.1 Services requirements

An ONVIF compliant device shall provide the device management and event service. The
service requirements for the different device types are defined in the device type
specifications.

If an ONVIF compliant device supports a certain service, the device shall respond to all
commands defined in the corresponding service WSDL. If the specific command is not
required for that service and the device does not support the command, the device should
respond to a request with the error codes:

ONVIF™ – 21 – ONVIF Core Spec. – Ver. 2.1.1

env:Receiver,

ter:ActionNotSupported,

see 5.11.2 for the definitions of the error codes.

5.2 WSDL overview

“WSDL is an XML format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are combined
into abstract endpoints (services). WSDL is extensible to allow description of endpoints and
their messages regardless of what message formats or network protocols are used to
communicate” [WSDL1.1].

This specification follows the WSDL 1.1 specification and uses the document/literal wrapped
pattern.

A WSDL document consists of the following sections:

 types – Definition of data types using XML schema definitions.

 message – Definition of the content of input and output messages.

 operation – Definition of how input and output messages are associated with a logical
operation.

 portType – Groups a set of operations together.

 binding – Specification of which protocols that are used for message exchange for a
particular portType.

 port – Specifies an address for a binding.

 service – Used to group a set of related ports.

5.3 Namespaces

Prefix and namespaces used in this standard are listed in Table 1. These prefixes are not part
of the standard and an implementation can use any prefix.

Table 1: Defined namespaces in this specification

Prefix Namespace URI Description

tt http://www.onvif.org/ver10/schema XML schema descriptions in this
specification.

tds

http://www.onvif.org/ver10/device/wsdl

The namespace for the WSDL device
service.

trt http://www.onvif.org/ver10/media/wsdl The namespace for the WSDL media
service.

tev http://www.onvif.org/ver10/events/wsdl The namespace for the WSDL event
service.

ter http://www.onvif.org/ver10/error The namespace for ONVIF defined

ONVIF™ – 22 – ONVIF Core Spec. – Ver. 2.1.1

faults.
dn http://www.onvif.org/ver10/network/wsdl The namespace used for the remote

device discovery service in this
specification.

tns1 http://www.onvif.org/ver10/topics The namespace for the ONVIF topic
namespace

The namespaces listed in table 2 are referenced by this standard.

Table 2: Referenced namespaces (with prefix)

Prefix Namespace URI Description

wsdl http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
framework.

wsoap12 http://schemas.xmlsoap.org/wsdl/soap12/ WSDL namespace for WSDL SOAP
1.2 binding.

http http://schemas.xmlsoap.org/wsdl/http/ WSDL namespace for WSDL HTTP
GET & POST binding.

soapenc http://www.w3.org/2003/05/soap-encoding Encoding namespace as defined by
SOAP 1.2 [SOAP 1.2, Part 2]

soapenv http://www.w3.org/2003/05/soap-envelope Envelope namespace as defined by
SOAP 1.2 [SOAP 1.2, Part 1]

xs http://www.w3.org/2001/XMLSchema Instance namespace as defined by
XS [XML-Schema, Part1] and [XML-
Schema, Part 2]

xsi http://www.w3.org/2001/XMLSchema-instance XML schema instance namespace.
d http://schemas.xmlsoap.org/ws/2005/04/discovery Device discovery namespace as

defined by [WS-Discovery].
wsadis http://schemas.xmlsoap.org/ws/2004/08/addressing Device addressing namespace

referred in WS-Discovery [WS-
Discovery].

wsa http://www.w3.org/2005/08/addressing Device addressing namespace as
defined by [WS-Addressing].

wstop http://docs.oasis-open.org/wsn/t-1 Schema namespace of the [WS-
Topics] specification.

wsnt http://docs.oasis-open.org/wsn/b-2 Schema namespace of the [WS-
BaseNotification] specification.

xop http://www.w3.org/2004/08/xop/include XML-binary Optimized Packaging
namespace as defined by [XOP]

In addition this standard refers without prefix to the namespaces listed in table 3.

Table 3: Referenced namespaces (without prefix)

Namespace URI Description

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete Topic expression dialect
defined for topic
expressions.

http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet The ONVIF dialect for the
topic expressions.

http://www.onvif.org/ver10/tev/messageContentFilter/ItemFilter The ONVIF filter dialect
used for message content
filtering.

5.4 Types

Data types are defined using XML schema descriptions Part1 and Part 2. All data types
defined in this specification are included in [ONVIF Schema] and can be downloaded from:

ONVIF™ – 23 – ONVIF Core Spec. – Ver. 2.1.1

 http://www.onvif.org/onvif/ver10/schema/onvif.xsd

5.5 Messages

According to WSDL 1.1 operations are described using input and output messages in XML.
The message section contains the message content.

A message in this specification contains two main elements:

 message name

 message parts

The message name specifies the name of the element and that name is used in the operation
definition in the WSDL document. The message name defines the name of the message.

The WSDL message part element is used to define the actual format of the message.
Although there can be multiple parts in a WSDL message, this specification follows the WS-I
basic profile [WS-I BP 2.0] and does not allow more than one part element in a message.
Hence we always use the same name (“parameters”) for the message part name.

The following WSDL notation is used for ONVIF specifications:

<message name="’Operation_Name’Request”>
<part name="parameters" element="’prefix’:’Operation_Name’"/>

</message>

respective,

<message name="’Operation_Name’Response”>

<part name="parameters" element="’prefix’:’Operation_Name’Response”/>
</message>

where 'prefix' is the prefix for the namespace in which the message is defined.

This specification uses message specific types that encapsulate multiple parts to allow
multiple arguments (or data) in messages.

5.6 Operations

Operations are defined within the WSDL portType declaration. An operation can be one of
these two types:

 One-way – The service provider receives a message.

 Request-response – The service provider receives a message and sends a
corresponding message.

Depending on the operation, different port types can be used.

The operation name defines the name of the operation.

Operations in the specification are defined using the following table format outlined in Table 4.

ONVIF™ – 24 – ONVIF Core Spec. – Ver. 2.1.1

Table 4: Operation description outline used in this specification

Operation_Name Access_Class_Name

Message name Description

‘Operation_Name’Request Description of the request message.

Typer1 Namer1 [ar1][br1]
Typer2 Namer2 [ar2][br2]
:
Typern Namern [arn][brn]

‘Operation_Name’Response Description of the response message.

Types1 Names1 [as1][bs2]
Types2 Names2 [as2][bs2]
:
Typesn Namesn [asn][bsn]

‘FaultMessage_Name’ In the case that operation specific faults are defined, this field
describes the structure of the defined fault message.

Fault codes Description

Code
 Subcode
 Subcode

Description of the operation specific fault.

The description column includes a list of the elements (if applicable) included in the request
and response messages respectively. The value between brackets defines the lower and
upper limits of the number of occurrences that can be expected for the element of the
specified type. For example, Names2 in the table above occurs at least as2 times and at most
bs2 times.

Most commands do not define any specific fault messages. If a message is defined, it follows
in the table directly after the response message.

The fault codes listed in the tables are the specific fault codes that can be expected from the
command, see 5.11.2.2. Any command can return a generic fault, see 5.11.2.2.

The Access_Class_Name defines the access class of the operation. The access class characterizes
the impact of the operation, see Section 5.12.1.1.

5.6.1 One-way operation type

A one-way operation type is used when the service provider receives a control message and
does not send any explicit acknowledge message or confirmation. This specification makes
use of one-way operations for discovery and event purposes only.

This operation type is defined by a single input message.

Use the following table format to describe one-way operations:

Operation_Name One-way

Message name Description

‘Operation_Name’Request Description of the request message.

Type1 Name1 [a1][b1]
Type2 Name2 [a2][b2]

ONVIF™ – 25 – ONVIF Core Spec. – Ver. 2.1.1

:
Typen Namen [an][bn]

This table corresponds to the following WSDL notation in the ONVIF specifications:

<operation name=”’Operation_Name’”>
 <input message=”’prefix’:’Operation_Name’”/>
</operation>

5.6.2 Request-response operation type

A request-response operation type is used when a service provider receives a message and
responds with a corresponding message.

This operation type is defined by one input, one output and multiple fault message.

Use the following table format to describe request-response operations:

Operation_Name Request-Response

Message name Description

‘Operation_Name’Request Description of the request message.

Typer1 Namer1 [ar1][br1]
Typer2 Namer2 [ar2][br2]
:
Typern Namern [arn][brn]

‘Operation_Name’Response Description of the response message.

Types1 Names1 [as1][bs2]
Types2 Names2 [as2][bs2]
:
Typesn Namesn [asn][bsn]

‘“FaultMessage_Name’ In the case that operation specific faults are defined, this field
describes the structure of the defined fault message.

Fault codes Description

Code
 Subcode
 Subcode

Description of the operation specific fault.

This table corresponds to the following WSDL notation:

<operation name=”’Operation_Name’”>
 <input message=”’prefix’:’Operation_Name’”/>

<output message=”’prefix’:’Operation_Name’Response”/>
<fault name> = “Fault” message = “’prefix’:’FaultMessage_Name’”>

</operation>

5.7 Port Types

A port type is a named set of abstract operations and the abstract messages involved. One
single port type is a collection of several different operations.

All operation names in the ONVIF specifications are sorted into categories. Each operation
category contains one or more operations. Each category holds only one type of operation
and is grouped into a single port type. A one-way operation and a request response operation
can never exist for the same port type.

ONVIF™ – 26 – ONVIF Core Spec. – Ver. 2.1.1

5.8 Binding

A binding defines concrete protocol and transport data format specification for a particular
port type. There may be any number of bindings for a given port type.

“Port_type” is a previously defined type and “Binding” is a character string starting with an
upper case letter that defines the name of the binding.

Binding definitions for an ONVIF compliant device according to this specification shall follow
the requirements in [WS-I BP 2.0]. This implies that the WSDL SOAP 1.2 bindings shall be
used.

The SOAP binding can have different styles. An ONVIF compliant device shall use the style
‘document’ specified at the operation level.

The bindings are defined in the WSDL specifications for respective services.

5.9 Ports

The individual endpoint is specified by a single address for a binding. Each port shall be given
a unique name. A port definition contains a name and a binding attribute.

This specification does not mandate any port naming principles.

5.10 Services

A service is a collection of related ports. This specification does not mandate any service
naming principles.

5.11 Error handling

As with any other protocol, errors can occur during communications, protocol or message
processing.

The specification classifies error handling into the following categories:

 Protocol Errors

 SOAP Errors

 Application Errors

5.11.1 Protocol errors

Protocol Errors are the result of an incorrectly formed protocol message, which could contain
illegal header values, or be received when not expected or experience a socket timeout. To
indicate and interpret protocol errors, HTTP and RTSP protocols have defined a set of
standard status codes [e.g., 1xx, 2xx, 3xx, 4xx, 5xx]. According to this standard, devices and
clients shall use appropriate RTSP and HTTP protocol defined status codes for error reporting
and when received handle accordingly.

ONVIF™ – 27 – ONVIF Core Spec. – Ver. 2.1.1

5.11.2 SOAP errors

SOAP Errors are generated as a result of Web Services operation errors or during SOAP
message processing. All such SOAP errors shall be reported and handled through SOAP fault
messages. The SOAP specification provides a well defined common framework to handle
errors through SOAP fault.

A SOAP fault message is a normal SOAP message with a single well-known element inside
the body (soapenv:Fault). To understand the error in more detail, SOAP has defined SOAP
fault message structure with various components in it.

 Fault code

 Subcode

 Reason

 Node and Role

 Fault Details

Subcode and Fault Detail elements information items are intended for carrying application
specific error information.

The ONVIF specifications use a separate name space for specific faults (see 5.11.2.2):

ter = “http://www.onvif.org/ver10/error”.

SOAP fault messages for different Web Services are defined as part of the different Web
Services definitions. Server and client shall use SOAP 1.2 fault message handling as
specified in this specification and shall follow the WS-I Basic Profile 2.0 fault handling
recommendations.

The following example is an error message (SOAP 1.2 fault message over HTTP). The values
in italics are placeholders for actual values.

HTTP/1.1 500 Internal Server Error
CONTENT-LENGTH: bytes in body
CONTENT-TYPE: application/soap+xml; charset=”utf-8”
DATE: when response was generated
<?xml version=”1.0” ?>
<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-
envelope"
 xmlns:ter="http://www.onvif.org/ver10/error"
 xmlns:xs="http://www.w3.org/2000/10/XMLSchema">
<soapenv:Body>
 <soapenv:Fault>
 <soapenv:Code>
 <soapenv:Value>fault code </soapenv:Value>
 <soapenv:Subcode>
 <soapenv:Value>ter:fault subcode</soapenv:Value>
 <soapenv:Subcode>
 <soapenv:Value>ter:fault subcode</soapenv:Value>
 </soapenv:Subcode>
 </soapenv:Subcode>
 </soapenv:Code>
 <soapenv:Reason>
 <soapenv:Text xml:lang="en">fault reason</soapenv:Text>

ONVIF™ – 28 – ONVIF Core Spec. – Ver. 2.1.1

 </soapenv:Reason>
 <soapenv:Node>http://www.w3.org/2003/05/soap-
envelope/node/ultimateReceiver</soapenv:Node>
 <soapenv:Role>http://www.w3.org/2003/05/soap-
envelope/role/ultimateReceiver</soapenv:Role>
 <soapenv:Detail>
 <soapenv:Text>fault detail</soapenv:Text>
 </soapenv:Detail>
 </soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

The following table summarizes the general SOAP fault codes (fault codes are defined in
SOAP version 1.2 Part 1: Messaging Framework). Server and client may define additional
fault subcodes for use by applications.

We distinguish between generic faults and specific faults. Any command can generate a
generic fault. Specific faults are related to a specific command or set of commands. Specific
faults that apply to a particular command are defined in the command definition table.

In the tables below, the Fault Code, Subcode and Fault Reason are normative values. The
description column is added for information.

5.11.2.1 Generic faults

Table 5 lists the generic fault codes and, if applicable, subcodes. All server and client
implementations shall handle all the faults listed below. Any web service command may return
one or several of the generic faults.

The faults listed without subcode do not have any subcode value.

Table 5: Generic faults

Fault Code Subcode Fault Reason Description

env:VersionMismatch SOAP version
mismatch

The device found an invalid
element information item
instead of the expected
Envelope element information
item.

env:MustUnderstand SOAP header
blocks not
understood

One or more mandatory
SOAP header blocks were not
understood.

env:DataEncodingUnknown Unsupported
SOAP data
encoding

SOAP header block or SOAP
body child element
information item is scoped
with data encoding that is not
supported by the device.

env:Sender ter:WellFormed Well-formed Error XML Well-formed violation
occurred.

env:Sender ter:TagMismatch Tag Mismatch There was a tag name or
namespace mismatch.

ONVIF™ – 29 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender ter:Tag No Tag XML element tag was
missing.

env:Sender ter:Namespace Namespace Error SOAP Namespace error
occurred.

env:Sender ter:MissingAttr Required Attribute
not present

There was a missing required
attribute.

env:Sender ter:ProhibAttr Prohibited
Attribute

A prohibited attribute was
present.

env:Sender ter:InvalidArgs Invalid Args An error due to any of the
following:

 missing argument

 too many arguments

 arguments are of the
wrong data type.

env:Sender ter:InvalidArgVal Argument Value
Invalid

The argument value is invalid.

env:Sender ter:UnknownAction Unknown Action An unknown action is
specified.

env:Sender ter:OperationProhibited Operation not
Permitted

The requested operation is
not permitted by the device.

env:Sender ter:NotAuthorized Sender not
Authorized

The action requested requires
authorization and the sender
is not authorized.

env:Receiver ter:ActionNotSupported Optional Action
Not Implemented

The requested action is
optional and is not
implemented by the device.

env:Receiver ter:Action Action Failed The requested SOAP action
failed.

env:Receiver ter:OutofMemory Out of Memory The device does not have
sufficient memory to complete
the action.

env:Receiver ter:CriticalError Critical Error The device has encountered
an error condition which it
cannot recover by itself and
needs reset or power cycle.

5.11.2.2 Specific faults

Specific faults apply only to a specific command or set of commands. The specific faults are
declared as part of the service definitions.

ONVIF™ – 30 – ONVIF Core Spec. – Ver. 2.1.1

5.11.2.3 HTTP errors

If the server waits for the start of the inbound message and no SOAP message is received,
the server shall not generate a SOAP fault and instead sends an HTTP error response.

Table 6: HTTP errors

HTTP Error HTTP
Error
Code

HTTP Reason

Malformed Request 400 Bad Request

Requires Authorization 401 Unauthorized

HTTP Method is neither POST or GET 405 Method Not Allowed

Unsupported message encapsulation method 415 Unsupported media

A server should avoid reporting internal errors as this can expose security weaknesses that
can be misused.

5.12 Security

The services defined in this standard shall be protected using either digest authentication
according to [RFC 2617] or the WS-Security framework, depending on the security policy.The
WS-Security specification defines a standard set of SOAP extensions that can be used to
provide Web Services message integrity and confidentiality. The framework allows several
different security models using tokens. The following tokens are currently defined:

 User name token profile [WS-UsernameToken]

 X.509 security token profile [WS-X.509Token]

 SAML token profile [WS-SAMLToken]

 Kerberos token profile [WS-KerberosToken]

 Rights Expression Language (REL) Token Profile [WS-RELToken]

If server supports both digest authentication as specified in [RFC 2617] and the user name
token profile as specified in WS-Security the following behavior shall be adapted: a web
service request can be authenticated on the HTTP level via digest authentication [RFC 2617]
or on the web service level via the WS-Security (WSS) framework. If a client does not supply
authentication credentials along with a web service request, the server shall assume that the
client intends to use digest authentication [RFC 2617], if required. Hence, if a client does not
provide authentication credentials when requesting a service that requires authentication, it
will receive an HTTP 401 error according to [RFC 2617]. Note that this behaviour on the
server’s side differs from the case of supporting only username token profile, which requires
for this case an HTTP 400 error on the HTTP level and a SOAP:Fault env:Sender
ter:NotAuthorized error on the WS level.

A client should not simultaneously supply authentication credentials on both the HTTP level
and the WS level. If a server receives a web service request that contains authentication
credentials on both the HTTP level and the WS level, it shall first validate the credentials

ONVIF™ – 31 – ONVIF Core Spec. – Ver. 2.1.1

provided on the HTTP layer. If this validation was successful, the server shall finally validate
the authentication credentials provided on the WS layer.

Figure 2 summarizes the authentication of a web service request by a server.

Figure 2: Authentication of a WS request by a server

Both digest authentication and the user name token profile give only a rudimentary level of
security. In a system where security is important, it is recommended to always configure the
device for TLS-based access (see 10.1). Digest authentication or the user name token
message level security combined with TLS, with client and server authentication, protected
transport level security give an acceptable level of security in many systems.

An ONVIF compliant device should authenticate an RTSP request at the RTSP level. If HTTP
is used to tunnel the RTSP request the device shall not authenticate on the HTTP level.

An ONVIF compliant device shall when authenticating RTSP and HTTP methods use user /
credentials from the same set of users / credentials that are used for the WS part. For user
defined with the user name token profile, digest authentication [RFC 2617] shall be used for
RTSP and HTTP.

5.12.1 User-based access control

The authorization framework described in Sect. 5.12 allows for authentication of service
requests. Once a service request is authenticated, the device shall decide based on its
access policy whether the requestor is authorized to receive the service.

ONVIF™ – 32 – ONVIF Core Spec. – Ver. 2.1.1

A device may support the definition of a custom access policy by the device user through the
get and set access policy operations defined in Section 8.4.

5.12.1.1 Default Access Policy

By default, the device should enforce the following default access policy, which gives an
acceptable level of security in many systems.

Each user is associated exactly one of the following user levels:

1. Administrator

2. Operator

3. User

4. Anonymous

Unauthenticated users are placed into the anonymous category and a device shall not allow
users to be added to the anonymous user level category.

The services are classified into access classes based to their impact (see Section 5.6). The
following access classes are defined:

 PRE_AUTH
The service shall not require user authentication.
Example: GetEndpointReference

 READ_SYSTEM
The service reads system configuration information from the device.
Example: GetNetworkInterfaces

 READ_SYSTEM_SECRET
The service reads confidential system configuration information from the device.
Example: GetSystemLog

 WRITE_SYSTEM
The service causes changes to the system configuration of the device.
Example: SetNetworkDefaultGateway

 UNRECOVERABLE
The service causes unrecoverable changes to the system configuration of the device.
Example: SetSystemFactoryDefault

 READ_MEDIA
The service reads data related to recorded media.
Example: GetRecordings

 ACTUATE
The service affects the runtime behaviour of the system.
Example: CreateRecordingJob

The default access policy builds upon the access classes that are associated to the services and
grants access rights in the following way. A user of level c shall be granted access to a service
associated to access class r if and only if an "X" is present in the cell at column c and row r in Table 7.

Table 7 Default Access Policy Definition
 Administrator Operator User Anonymous
PRE_AUTH X X X X

ONVIF™ – 33 – ONVIF Core Spec. – Ver. 2.1.1

READ_SYSTEM X X X
READ_SYSTEM_SECRET X
WRITE_SYSTEM X
UNRECOVERABLE X
READ_MEDIA X X X
ACTUATE X X

5.12.2 Username token profile

A client shall use both nonce and timestamps as defined in [WS-UsernameToken]. The server
shall reject any Username Token not using both nonce and creation timestamps.

This specification defines a set of command for managing the user credentials, see 8.4.
These commands allow associating users with the different user levels defined in 5.12.1.

5.12.2.1 Password derivation

The use of the same credentials on several devices introduces a certain security risk. To
require the user to supply a unique credential for each device is not feasible, instead a client
using the username token profile should and a client using digest authentication may
implement the following password derivation algorithm.

Denote by UA an arbitrary user. Denote by P_UA the password value used by user UA to
access the devices in the system. Furthermore, denote, by NEP, the end device service point
reference value for a particular device in the system. Finally, denote by PE_UA the password
equivalent used by the client to access a particular device in the system. The client should
calculate the PE_UA as follows:

PE_UA = base64(HMAC_SHA-1(UA+P_UA,NEP+”ONVIF password”)),

where “+” denotes concatenation and where the “ONVIF password” is an ASCII string. It
should be included in the exact form it is given without a length byte or trailing null character,
i.e., the following hexadecimal value: 4F 4E 56 49 46 20 70 61 73 73 77 6F 72 64.

HMAC_SHA-1 is the algorithm specified in [RFC 2104] using SHA-1 [FIPS 180-2] as the
underlying algorithm. The key value to use for the HMAC function is the user password, P_UA,
directly mapped to its binary equivalent. Similar, the value PE_UA should be mapped to its
ASCII equivalent before transmitting it to the device.

base64 is described in [RFC 3548], note that the result of the base64 operation is the actual password
equivalent and shall be used as it is.

5.12.2.1.1 Example

Assume the following password and password is used by the client (ASCII): “user” and
“VRxuNzpqrX”, i.e.,

UA = 75 73 65 72

P_UA = 56 52 78 75 4E 7A 70 71 72 58

Next, assume the device has the following device service end point reference value:

Urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

ONVIF™ – 34 – ONVIF Core Spec. – Ver. 2.1.1

Then the password equivalent to be used will be then calculated as:

PE_UA = base64(HMAC_SHA-1(UA+ P_UA,NEP+”ONVIF password”)) =

base64(HMAC_SHA-1(75736572565278754E7A70717258,

F81D4fAE7DEC11D0A76500A0C91E6BF6+4F4E5649462070617373776F7264)) =

base64(16 E5 C5 A9 4D DE 8A 97 6D D7 2F 55 78 5F C2 D0 6B DA 53 4A)=

FuXFqU3eipdt1y9VeF/C0GvaU0o=

The resulting password equivalence “FuXFqU3eipdt1y9VeF/C0GvaU0o=” is the password that
shall be used by a client both for configuring the user credential on the particular device and
then also for accessing the device.

ONVIF™ – 35 – ONVIF Core Spec. – Ver. 2.1.1

6 IP configuration

The device and client communicate over an open or closed IP network. This standard does
not place any general restrictions or requirements on the network type. It shall be possible,
however, to establish communication links between the entities according to the architectural
framework specified in 4. Device IP configuration includes parameters such as IP addresses
and a default gateway.

An ONVIF compliant device shall have at least one network interface that gives it IP network
connectivity. Similarly, the client shall have at least one network interface that gives IP
connectivity and allows data communication between the device and the client.

Both device and client shall support IPv4 based network communication. The device and
client should support IPv6 based network communication.

It shall be possible to make static IP configuration on the device using a network or local
configuration interface.

An ONVIF compliant device should support dynamic IP configuration of link-local addresses
according to [RFC3927]. A device that supports IPv6 shall support stateless IP configuration
according to [RFC4862] and neighbour discovery according to RFC4861.

The device shall support dynamic IP configuration according to [RFC 2131]. A device that
supports IPv6 shall support stateful IP configuration according to [RFC3315].

The device may support any additional IP configuration mechanism.

Network configuration of a device shall be provided via the ONVIF device management
service as specified in section 8.2 and may additionally be provided through local interfaces.
The latter is outside the scope of this specification.

The default device configuration shall have both DHCP and dynamic link-local (stateless)
address configuration enabled. Even if the device is configured through a static address
configuration it should have the link-local address default enabled.

When a device is connected to an IPv4 network, address assignment priorities (link local
versus routable address) should be done as recommended in [RFC3927].

Further details regarding how the IP connectivity is achieved are outside the scope of this
standard.

ONVIF™ – 36 – ONVIF Core Spec. – Ver. 2.1.1

7 Device discovery

7.1 General

A client searches for available devices using the dynamic Web Services discovery protocol
[WS-Discovery].

A device compliant with this specification shall implement the Target Service role as specified
in [WS-Discovery].

If necessary a client compliant with this specification shall implement the Client role as
specified in [WS-Discovery].

The Discovery Proxy role as described in [WS-Discovery] shall not be supported by a device
or a client (an alternative Discovery Proxy role is introduced in this specification, see Section
7.4). A device that implements the client role ignores the interaction scheme with the
Discovery Proxy as described in Section 3 in [WS-Discovery]. Instead, this specification
defines a new Discovery Proxy role that allows remote discovery. The remote discovery relies
on the presence of a Discovery Proxy and a system provider that would like to offer remote
discovery in the system should implement the Discovery Proxy role as specified in Section 7.4

[WS-Discovery] describes the Universally Unique Identifier (UUID): URI format
recommendation for endpoint references in Section 2.6, but this specification overrides this
recommendation. Instead, the Uniform Resource Name: Universally Unique Identifier
(URN:UUID) format is used [RFC4122] (see Section 7.3.1).

7.2 Modes of operation

The device shall be able to operate in two modes:

 Discoverable

 Non-discoverable

A device in discoverable mode sends multicast Hello messages once connected to the
network or sends its Status changes according to [WS-Discovery]. In addition it always listens
for Probe and Resolve messages and sends responses accordingly. A device in non-
discoverable shall not listen to [WS-Discovery] messages or send such messages.

The devices default behaviour shall be the discoverable mode. In order to thwart denial-of-
service attacks, it shall be possible to set a device into non-discoverable mode through the
operation defined in 8.3.19.

7.3 Discovery definitions

7.3.1 Endpoint reference

A device or an endpoint that takes the client role should use a URN:UUID [RFC4122] as the
address property of its endpoint reference.

The device or an endpoint that takes the client role shall use a stable, globally unique
identifier that is constant across network interfaces as part of its endpoint reference property.
The combination of an wsadis:Address and wsadis:ReferenceProperties provide a stable and
globally-unique identifier.

ONVIF™ – 37 – ONVIF Core Spec. – Ver. 2.1.1

7.3.2 Hello

7.3.2.1 Types

An ONVIF compliant device shall include the device management service port type, i.e.
tds:Device, in the <d:Types> declaration.

The following example shows how the type is encoded in the SOAP Hello body:

<d:Types>tds:Device</d:Types>.

The Hello message may include additional types.

7.3.2.2 Scopes

An ONVIF compliant device shall include the scope <d:Scopes> attribute with the scopes of
the device in the Hello message.

The device scope is set by using [RFC 3986] URIs. This specification defines scope attributes
as follows:

The scheme attribute:onvif

The authority attribute:www.onvif.org

This implies that all ONVIF defined scope URIs have the following format:

onvif://www.onvif.org/<path>

A device may have other scope URIs. These URIs are not restricted of ONVIF defined
scopes.

Table 8 defines a set of scope parameters. Apart from these standardized parameters, it shall
be possible to set any scope parameter as defined by the device owner. Scope parameters
can be listed and set through the commands defined in Section 8.3.

A device may have other scope URIs. These URIs are not restricted of ONVIF defined
scopes.

ONVIF™ – 38 – ONVIF Core Spec. – Ver. 2.1.1

Table 8: Scope parameters

Category Defined values Description

Profile Any character string. Value that indicates the profile supported by the device.
The defined values are outside of the scope of this
document and are defined in the profile specifications.

location Any character string or
path value.

The location defines the physical location of the device.
The location value might be any string describing the
physical location of the device. A device shall include at
least one location entry into its scope list.

hardware Any character string or
path value.

A string or path value describing the hardware of the
device. A device shall include at least one hardware
entry into its scope list.

name Any character string or
path value.

The searchable name of the device. A device shall
include at least one name entry into its scope list.

A device shall include at least one entry of the profile, location, hardware and name
categories respectively in the scopes list. A device may include any other additional scope
attributes in the scopes list.

A device might include an arbitrary number of scopes in its scope list. This implies that one
unit might for example define several different location scopes. A probe is matched against all
scopes in the list.

7.3.2.2.1 Example

The following example illustrates the usage of the scope value. This is just an example, and
not at all an indication of what type of scope parameter to be part of a device configuration. In
this example we assume that the device is configured with the following scopes:
onvif://www.onvif.org/Profile/Streaming
onvif://www.onvif.org/hardware/D1-566
onvif://www.onvif.org/location/country/china
onvif://www.onvif.org/location/city/bejing
onvif://www.onvif.org/location/building/headquarter
onvif://www.onvif.org/location/floor/R5
onvif://www.onvif.org/name/ARV-453

A client that probes for the device with scope onvif://www.onvif.org will get a match.
Similarly, a probe for the device with scope:

onvif://www.onvif.org/location/country/china

will give a match. A probe with:

onvif://www.onvif.org/hardware/D1

 will not give a match.

7.3.2.3 Addresses

A device shall include the <d:XAddrs> element with the address(es) for the device service in
the Hello message. A URI shall be provided for each protocol (http, https) and externally
available IP address.

The device should provide a port 80 device service entry in order to allow firewall traversal.

ONVIF™ – 39 – ONVIF Core Spec. – Ver. 2.1.1

The IP addressing configuration principles for a device are defined in 5.12.2.1.1.

7.3.3 Probe and Probe Match

For the device probe match types, scopes and addresses definitions, see 7.3.2 Hello.

An ONVIF compliant device shall at least support the
http://schemas.xmlsoap.org/ws/2005/04/discovery/rfc3986 scope matching rule.
This scope matching definitions differs slightly from the definition in [WS-Discovery] as [RFC
2396] is replaced by [RFC 3986].

A device shall include the <d:XAddrs> element with the addresses for the device service in a
matching probe match message. The <d:XAddrs> element will in most cases only contain
one address to the device management service as defined in 5.1.

7.3.4 Resolve and Resolve Match

This specification requires end point address information to be included into Hello and Probe
Match messages. In most cases, there is no need for the resolve and resolve match exchange.
To be compatible with the [WS-Discovery] specification, however, a device should implement
the resolve match response.

7.3.5 Bye

A device should send a one-way Bye message when it prepares to leave a network as
described in WS-Discovery.

7.3.6 SOAP Fault Messages

If an error exists with the multicast packet, the device and client should silently discard and
ignore the request. Sending an error response is not recommended due to the possibility of
packet storms if many devices send an error response to the same request. For completeness,
unicast packet error handling is described below.

If a device receives a unicast Probe message and it does not support the matching rule, then
the device may choose not to send a Probe Match, and instead generate a SOAP fault bound
to SOAP 1.2 as follows:

[action] http://schemas.xmlsoap.org/ws/2005/04/discovery/fault

[Code] s12:Sender

[Subcode] d:MatchingRuleNotSupported

[Reason] E.g., the matching rule specified is not supported

[Detail] <d: SupportedMatchingRules>

 List of xs:anyURI

 </d: SupportedMatchingRules>

ONVIF™ – 40 – ONVIF Core Spec. – Ver. 2.1.1

7.4 Remote discovery extensions

This section describes optional discovery extensions needed to cover more complex network
scenarios. A device that supports remote service discovery shall support the discovery
extensions defined in this section.

The remote discovery extensions defined in this section can be used together with the
ordinary multicast base WS-Discovery scheme as defined in this specification. For example,
the remote discovery extensions can work in parallel with the ordinary “local” discovery.

7.4.1 Network scenarios

If the client and the device do not reside in the same administrative domain, it is not possible
for the client to find and connect to the device using multicast probe. For example, if the
device or the client resides in a network behind a firewall or NAT (Gateway GW) it could not
connect to a multicast probe. Other methods, then, are needed and the specification uses four
different scenarios:

1. The device resides in one administrative domain (private) and the client resides in a
public network, see Figure 3.

2. The device resides in a public network and the client resides in one administrative
domain (private), see Figure 4.

3. The device resides in one administrative domain (private) and the client resides in
another administrative domain (private), see Figure 5.

4. Both the device and the client reside in a public network, see Figure 6.

Figure 3: A device in an administrative domain (private) and the client in a public
network

ONVIF™ – 41 – ONVIF Core Spec. – Ver. 2.1.1

Figure 4: A device in public network and the client in an adminstrative domain (private)

Figure 5: A device in an administrative domain (private) and the client in another

administrative domain (private)

ONVIF™ – 42 – ONVIF Core Spec. – Ver. 2.1.1

Figure 6: Both a device and the client in a public network.

The [WS-Discovery] specification introduces a Discovery Proxy (DP) to solve some of these
scenarios. However the [WS-Discovery] specification does not have support for all the
network scenarios introduced in this specification. This specification defines a DP that
enables “plug and play” also for the more complex network scenarios we have listed above.
This DP is not compliant with [WS-Discovery] specification.

7.4.2 Discover proxy

A network administrator configuring a network for a device in a wide area network spanning
several administrative domains, needs to introduce a DP endpoint into the system. The DP
performs the following tasks:

1. Listen for device hello messages and responds to these as defined in Section 7.4.3.

2. Responds to probe queries on behalf of registered devices from clients.

The DP may reside in the same administrative domain as the device. In order to support
network scenarios where the client and device reside in different domains without multicast
connectivity, place the DP in a publicly available network so that device and client endpoints
can access it. It shall be possible for the device to find the network address of its “home DP”
in order to allow the announcement of its presence with a Hello message directly sent to its
home DP. According to this specification, the home DP network address can be obtained in
the following ways:

1. Direct address configuration.

2. DP discovery using DNS Service record (SRV) lookup.

The device tries to connect to a home DP once it gets network connectivity or when the home
DP network address is changed using either of these methods.

It shall be possible to enable/disable the device remote discovery registration. A device
supporting remote discovery shall implement the remote Hello disable/enable operation as
defined in Section 8.3.21.

A device that is not configured with a home DP address or a device with remote Hello
disabled shall not send a remote Hello as defined in Section 7.4.3.

ONVIF™ – 43 – ONVIF Core Spec. – Ver. 2.1.1

7.4.2.1 Direct DP address configuration

This specification introduces a device management command for home DP address
configuration over the network interface, see Section 8.3.22 and Section 8.3.23.

7.4.2.2 DNS service record lookup

If a device has remote discovery enabled but lacks remote DP address configuration, it shall
try to make a DNS SRV lookup for the home DP. The following record name and protocol
definition [RFC2782] shall be used:

_onvifdiscover._tcp

In order to avoid a DNS SRV lookup by the device, a DP address shall be configured using
direct address configuration before enabling remote discovery.

In order for devices to make a successful DP lookup for other devices, an administrator shall
enter the DP address, port and priority into the DNS using SRVs. One or several enrolment
servers need to be present. The exact number will depend on the load of the system and is
outside the scope of this specification.

7.4.3 Remote Hello and Probe behaviour

The local discovery pattern as defined in [WS-Discovery] does not work for the remote
discovery scenarios. If the device resides behind a NAT/Firewall, like the scenarios shown in
Figure 3 or Figure 5, a unicast Probe from the DP will not automatically reach the device if the
device does not return a public network address. Furthermore, if the device resides behind a
firewall, the device following Probe Match unicast might not reach back to the DP. The
specification defines a slightly different communication pattern for the remote discovery to
solve this problem.

A device configured for remote Hello sends, in addition to the multicast Hello when it joins a
network or its metadata changes, a remote Hello message to its home DP. This message is
sent as a Web Services request operation from the device to the DP using the HTTP binding
as defined in [ONVIF DP WSDL]. The remote Hello shall include its scope list in the Hello
message.

Once the home DP receives a Hello message from any device, it responds with a Hello
response message confirming the device registration through the hello message.

Similarly, when a device prepares for leaving a network it should send a Bye request to the
remote DP. The DP acknowledges the Bye request through a Bye response message.

The DP Hello, Hello response, Bye and Bye response are provided as a DP service, see
[ONVIF DP WSDL] for the WSDL definitions.

Using these extensions, the discovery messages can reach the desired endpoints.

ONVIF™ – 44 – ONVIF Core Spec. – Ver. 2.1.1

Figure 7: Remote discovery message exchange pattern between a and a HomeDP

7.4.4 Client behaviour

For the remote discovery scenarios, the client needs to send probe messages to the home DP.
The client then needs to be configured such that it can directly connect to the home DP.

7.4.4.1 Client home DP configuration

The client can be configured to directly probe for new devices through the home DP. In this
case the home DP discovery service address shall be pre-configured into the client. The exact
means of this configuration is outside the scope of this specification.

An client configured for remote discovery sends probe requests directly to its home DP. The
probe message is sent as a Web Services request operation from the client to the DP using
the http binding (see [ONVIF DP WSDL]).

Once the home DP receives a Probe message from any client, it responses with
corresponding Probe Match message according to the normal WS-Discovery message
exchange pattern, see the sequence chart in Figure 8.

ONVIF™ – 45 – ONVIF Core Spec. – Ver. 2.1.1

Figure 8: Message sequence for clients pre-configured with home DP address

7.4.5 Security

7.4.5.1 Local discovery

Security and discovery can be viewed as contradictory goals. While the main idea behind a
discovery protocol is to announce the presence of a service, it is hard to exclude other
endpoints from access to the service announcements. WS-Discovery does not provide any
extra access to services (if the other security mechanism specified in this specification are
used), even on the same LAN; it merely announces their existence. Furthermore, local
discovery works only within multicast reach range. Thus, the main security impact of WS-
Discovery is the risk of denial of service attacks on devices or privacy issues if it is important
to hide the presence of devices in the network. The risk of the latter two problems will very
much depend on the device deployment environment. In order to reduce these threats, this
specification has introduced the two different discovery modes, see Section 7.2. This always
gives the possibility for the client to switch off the device discovery function in the device. In
non-discoverable mode, a device will never announce its presence with Hello messages or
respond to any Probe or Resolve requests.

7.4.5.2 Remote discovery

In the remote network scenario, the DP resides on the Internet and is vulnerable. Extra
security measurements, then, shall be taken to protect the DP from attacks. The remote Hello
and Probe and Probe Match messages, as defined in Section 7.4.3, shall be sent over HTTPS.
This transport will not prevent denial of service attacks, but it can protect it from illegal device
registrations if client authentication is used. If protection of denial of service is a major
concern, other measurements need to be taken, which is outside the scope of the current
specification.

Before registering a device in the device data base the DP should authenticate the device to
make sure that it is a “legal” device that announces its presence, for example by using client
certificates. Client certificate provisioning is outside the scope of the current specification.

The client to DP remote Probe and Probe Match messages shall be sent over HTTPS. The DP
shall authenticate the client before responding to a Probe request. This can be done using
TLS client certificates or any other suitable client authentication mechanism.

ONVIF™ – 46 – ONVIF Core Spec. – Ver. 2.1.1

ONVIF™ – 47 – ONVIF Core Spec. – Ver. 2.1.1

8 Device management

The Device Service is divided into five different categories: capabilities, network, system, I/O
and security commands. This set of commands can be used to get information about the
device capabilities and configurations or to set device configurations. An ONVIF compliant
device shall support the device management service as specified in [ONVIF DM WSDL]. A
basic set of operations are required for the device management service, other operations are
recommended or optional to support. The detailed requirements are listed under the command
descriptions.

8.1 Capabilities

8.1.1 Get WSDL URL

It is possible for an endpoint to request a URL that can be used to retrieve the complete
schema and WSDL definitions of a device. The command gives in return a URL entry point
where all the necessary product specific WSDL and schema definitions can be retrieved. The
device shall provide a URL for WSDL and schema download through the GetWsdlUrl
command.

Table 9: Get WSDL URL command

GetWsdlUrl Access Class: PRE_AUTH

Message name Description

GetWsdlUrlRequest This is an empty message.

GetWsdlUrlResponse The requested URL.

 xs:anyURI WsdlUrl [1][1]

Fault codes Description

 No command specific faults!

8.1.2 Capability exchange

Any endpoint can ask for the capabilities of a device using the capability exchange request
response operation. The device shall indicate all its ONVIF compliant capabilities through the
GetCapabilities command.

The capability list includes references to the addresses (XAddr) of the service implementing
the interface operations in the category.

8.1.2.1 GetServices

Returns a collection of the devices services and possibly their available capabilities. The
returned capability response message is untyped to allow future addition of services, service
revisions and service capabilities.

A device shall implement this method if any of the ONVIF compliant services implements the
GetServiceCapabilities.

ONVIF™ – 48 – ONVIF Core Spec. – Ver. 2.1.1

Table 10: Get Services command

GetServices Access Class: PRE_AUTH

Message name Description

 GetServicesRequest The message contains a request for all services in the device and
possibly the capabilities for each service. If the Boolean
IncludeCapability is set, then the response shall include the services
capabilities.

boolean IncludeCapability[1][1]

GetServicesResponse The capability response message contains the requested information
about the services.

tt:ServiceList [1][unbounded]

Fault codes Description

 No command specific faults!

8.1.2.2 GetServiceCapabilities

This command returns the capabilities of the device service. The service shall implement this
method if the device supports the GetServices method.

Table 11 describes how to interpret the indicated capabilities.

Table 11: GetServiceCapabilities command

GetServiceCapabilities Access Class: PRE_AUTH

Message name Description

 GetServiceCapabilitiesRequest This is an empty message.

GetServiceCapabilitiesResponse The capability response message contains the requested device
capabilities using a hierarchical XML capability structure.

tds:DeviceServiceCapabilities Capabilities [1][1]

Fault codes Description

 No command specific faults!

ONVIF™ – 49 – ONVIF Core Spec. – Ver. 2.1.1

Table 12: The capabilities in the GetServiceCapabilities command

Category Capability Description

IPFilter Indication if the device supports
IP filtering control using the
commands in Section 8.2.18,
8.2.19, 8.2.20 and 8.2.21.

ZeroConfiguration Indication if the device supports
zero configuration according to
the commands in Section 8.2.16
and Section 8.2.17.

IPVersion6 Indication if the device supports
IP version 6.

DynDNS Indication if the device supports
Dynamic DNS configuration
according to Section 8.2.8and
Section 8.2.9 .

Dot11Configuration Indication if the device supports
IEEE802.11 configuration as
specified in Section 8.2.22

HostnameFromDHCP Indicates whether retrieval of
hostname from DHCP is
supported by the device.

Network

NTP Indicates the maximum number
of supported NTP servers by the
devices SetNTP command.

DiscoveryResolve Indication if the device
responses to resolve requests
as described in Section 7.3.4.

DiscoveryBye Indication if the device sends
bye messages as described in
Section 7.3.5

RemoteDiscovery Indication if the device supports
remote discovery support as
specified in Section 7.4.

SystemBackup Indication if the device supports
system backup and restore as
specified in Section 8.3.3 and
Section 8.3.5

System

FirmwareUpgrade Indication if the device supports
firmware upgrade as specified in
Section 8.3.10.

ONVIF™ – 50 – ONVIF Core Spec. – Ver. 2.1.1

SystemLogging Indication if the device supports
system log retrieval as specified
in Section 8.3.11.

HttpSystemBackup Indication if the device supports
system backup and restore
using HTTP GET and POST.

HttpFirmwareUpgrade

Indication if the device supports
firmware upgrade using HTTP
POST.

HTTPSystemLogging Indication if the device supports
retrieval of system log using
HTTP Get, see section 8.3.2.

HTTPSupportInformation Indication if the device supports
retrieval of support information
using HTTP Get, see section
8.3.2.

TLS1.0 Support of TLS 1.0.

TLS1.1 Support of TLS 1.1.

TLS1.2 Support of TLS 1.2.

OnboardKeyGeneration Indication if the device supports
onboard key generation and
creation of self-signed
certificates as specified in
Section 8.4.8.

AccessPolicyConfig Indication if the device supports
retrieving and loading device
access control policy according
to Section 8.4.1 and Section
8.4.2.

DefaultAccessPolicy Indicates if the device supports
the default access policies as
defined in 5.12.1.1.

UsernameToken Indication if the device supports
WS-Security UsernameToken
authentication as defined in
[WS-UsernameToken].

HttpDigest Indication if the device supports
the HTTP digest authentication.

Security

X.509Token Indication if the device supports
the WS-Security X.509 token
[WS-X.509Token].

ONVIF™ – 51 – ONVIF Core Spec. – Ver. 2.1.1

SAMLToken Indication if the device supports
the WS-Security SAML token
[WS-SAMLToken].

KerberosToken Indication if the device supports
the WS-Security Kerberos token
[WS-KerberosToken].

RELToken Indication if the device supports
the WS-Security REL token
[WS-RELToken].

Dot1X Indication if the device supports
IEEE 802.1X port-based
network authentication

SupportedEAPMethod List of supported EAP Method
types. The numbers correspond
to the IANA [EAP-Registry].

RemoteUserHandling Indication if device supports
remote user handling and the
corresponding methods defined
in section 8.4.21 and 8.4.22.

8.1.2.3 GetCapabilities

This method provides a backward compatible interface for the base capabilities. Refer to
GetServices for a full set of capabilities.

Annex B describes how to interpret the indicated capability. Apart from the addresses, the
capabilities only reflect optional functions in this specification.

Table 13: Get Capabilities command

GetCapabilities Access Class: PRE_AUTH

Message name Description

 GetCapabilitiesRequest This message contains a request for device capabilities. The client can
either ask for all capabilities or just the capabilities for a particular
service category. If no Category is specified the device SHALL return
all capabilities.

tt:CapabilityCategory Category [0][unbounded]

GetCapabilitiesResponse The capability response message contains the requested device
capabilities using a hierarchical XML capability structure.

 tt:Capabilities Capabilities [1][1]

Fault codes Description

env:Receiver
 ter:ActionNotSupported

The requested WSDL service category is not supported by the device.

ONVIF™ – 52 – ONVIF Core Spec. – Ver. 2.1.1

 ter:NoSuchService

For the list of capabilities refer to Annex B.

8.2 Network

8.2.1 Get hostname

This operation is used by an endpoint to get the hostname from a device. The device shall
return its hostname configurations through the GetHostname command.

Table 14: GetHostname command

GetHostname Access Class: PRE_AUTH

Message name Description

GetHostnameRequest This is an empty message.

GetHostnameResponse This message contains:
 “FromDHCP”: True if the hostname is obtained via DHCP
 “Name”: The host name. In case of DHCP the host name has

been obtained from the DHCP server.

 xs:boolean FromDHCP [1][1]
 xs:token Name [0][1]

Fault codes Description

 No command specific faults!

8.2.2 Set hostname

This operation sets the hostname on a device. It shall be possible to set the device hostname
configurations through the SetHostname command. Attention: a call to SetDNS may result in
overriding a previously set hostname.

A device shall accept strings formated according to RFC 1123 section 2.1 or alternatively to
RFC 952, other string shall be considered as invalid strings.

A device shall try to retrieve the name via DHCP when the HostnameFromDHCP capability is
set and an empty name string is provided.

Table 15: SetHostname command

SetHostname Access Class: WRITE_SYSTEM

Message name Description

SetHostnameRequest This message contains:

 “Name”: The host name. If Name is an empty string hostname
should be retrieved from DHCP, otherwise the specified Name
shall be used.

 xs:token Name [1][1]

ONVIF™ – 53 – ONVIF Core Spec. – Ver. 2.1.1

SetHostnameResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidHostname

The requested hostname cannot be accepted by the device.

8.2.3 Set hostname from DHCP

This operation controls whether the hostname shall be retrieved from DHCP.

A device shall support this command if support is signalled via the HostnameFromDHCP
capability. Depending on the device implementation the change may only become effective
after a device reboot.

Table 16: SetHostnameFromDHCP command

SetHostnameFromDHCP Access Class: WRITE_SYSTEM

Message name Description

SetHostnameFromDHCPReq
uest

This message contains:

• “FromDHCP”: True if the hostname shall be obtained via DHCP.

 xs:boolean FromDHCP[1][1]

SetHostnameFromDHCPRes
ponse

An indication if a reboot is needed in case of changes in the hostname
settings.

 xs:boolean RebootNeeded [1][1]

Fault codes Description

 No command specific faults!

8.2.4 Get DNS settings

This operation gets the DNS settings from a device. The device shall return its DNS
configurations through the GetDNS command.

Table 17: GetDNS command

GetDNS Access Class: READ_SYSTEM

Message name Description

GetDNSRequest This is an empty message.

GetDNSResponse This message contains:
 “FromDHCP”: True if the DNS servers are obtained via DHCP.
 “SearchDomain”: The domain(s) to search if the hostname is not

fully qualified.
 “DNSFromDHCP”: A list of DNS servers obtained via DHCP in

case FromDHCP is equal to true. This means that the resolved
addresses in the field DNSFromDHCP are coming from DHCP and
describes the configuration status.

ONVIF™ – 54 – ONVIF Core Spec. – Ver. 2.1.1

 “DNSManual”: A list of manually given DNS servers

xs:boolean FromDHCP [1][1]
xs:token SearchDomain [0][unbounded]
tt:IPAddress DNSFromDHCP [0][unbounded]
tt:IPAddress DNSManual [0][unbounded]

Fault codes Description

 No command specific faults!

8.2.5 Set DNS settings

This operation sets the DNS settings on a device. It shall be possible to set the device DNS
configurations through the SetDNS command.

Table 18: Set DNS command

SetDNS Access Class: WRITE_SYSTEM

Message name Description

SetDNSRequest This message contains:

 “FromDHCP”: True if the DNS servers are obtained via DHCP
 “SearchDomain”: The domain(s) to search if the hostname is not

fully qualified.
 “DNSManual”: A list of manually given DNS servers

xs:boolean FromDHCP [1][1]
xs:token SearchDomain [0][unbounded]
tt:IPAddress DNSManual [0][unbounded]

SetDNSResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

8.2.6 Get NTP settings

This operation gets the NTP settings from a device. If the device supports NTP, it shall be
possible to get the NTP server settings through the GetNTP command.

Table 19: GetNTP command

GetNTP Access Class: READ_SYSTEM

Message name Description

GetNTPRequest This is an empty message.

ONVIF™ – 55 – ONVIF Core Spec. – Ver. 2.1.1

GetNTPResponse This message contains:

 “FromDHCP”: True if the NTP servers are obtained via DHCP.
 “NTPFromDHCP”: A list of NTP servers obtained via DHCP in

case FromDHCP is equal to true. This means that the NTP
server addresses in the field NTPFromDHCP are coming from
DHCP and describes the current configuration status.

 “NTPManual”: A list of manually given NTP servers

xs:boolean FromDHCP [1][1]
tt:NetworkHost NTPFromDHCP [0][unbounded]
tt:NetworkHost NTPManual [0][unbounded]

Fault codes Description

 No command specific faults!

8.2.7 Set NTP settings

This operation sets the NTP settings on a device. If support for NTP is signalled via the NTP
capability, it shall be possible to set the NTP server settings through the SetNTP command.

A device shall accept string formated according to RFC 1123 section 2.1, other string shall be
considered as invalid strings.

Changes to the NTP server list shall not affect the clock mode DateTimeType. Use
SetSystemDateAndTime to activate NTP operation.

Table 20: SetNTP command

SetNTP Access Class: WRITE_SYSTEM

Message name Description

SetNTPRequest This message contains:
 “FromDHCP”: True if the NTP servers are obtained via DHCP.
 “NTPManual”: A list of manually given NTP servers when they

not are obtained via DHCP.

xs:boolean FromDHCP [1][1]
tt:NetworkHost NTPManual [0][unbounded]

SetNTPResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidDnsName

The suggested NTP server name is invalid.

env:Sender
 ter:InvalidArgVal
 ter:TimeSyncedToNtp

Current DateTimeType requires an NTP server.

ONVIF™ – 56 – ONVIF Core Spec. – Ver. 2.1.1

8.2.8 Get dynamic DNS settings

This operation gets the dynamic DNS settings from a device. If the device supports dynamic
DNS as specified in [RFC 2136] and [RFC 4702], it shall be possible to get the type, name
and TTL through the GetDynamicDNS command.

Table 21: GetDynamicDNS command

GetDynamicDNS Access Class: READ_SYSTEM

Message name Description

GetDynamicDNSRequest This is an empty message.

GetDynamicDNSResponse This message contains:
 “Type”: The type of update. There are three possible types:

the device desires no update (NoUpdate), the device wants
the DHCP server to update (ServerUpdates) and the device
does the update itself (ClientUpdates).

 “Name”: The DNS name in case of the device does the
update.

 “TTL”: Time to live.

tt:DynamicDNSType Type [1][1]
tt:DNSName Name [0][1]
xs:duration TTL [0][1]

Fault codes Description

 No command specific faults!

8.2.9 Set dynamic DNS settings

This operation sets the dynamic DNS settings on a device. If the device supports dynamic
DNS as specified in [RFC 2136] and [RFC 4702], it shall be possible to set the type, name
and TTL through the SetDynamicDNS command.

Table 22: SetDynamicDNS command

SetDynamicDNS Access Class: WRITE_SYSTEM

Message name Description

SetDynamicDNSRequest This message contains:
 “Type”: The type of update. There are three possible types: the

device desires no update (NoUpdate), the device wants the
DHCP server to update (ServerUpdates) and the device does
the update itself (ClientUpdates).

 “Name”: The DNS name in case of the device does the
update.

 “TTL”: Time to live.

tt:DynamicDNSType Type [1][1]
tt:DNSName Name [0][1]
xs:duration TTL [0][1]

SetDynamicDNSResponse This is an empty message.

Fault codes Description

ONVIF™ – 57 – ONVIF Core Spec. – Ver. 2.1.1

 No command specific faults!

8.2.10 Get network interface configuration

This operation gets the network interface configuration from a device. The device shall
support return of network interface configuration settings as defined by the NetworkInterface
type through the GetNetworkInterfaces command.

Table 23: GetNetworkInterfaces command

GetNetworkInterfaces Access Class: READ_SYSTEM

Message name Description

GetNetworkInterfacesRequest This is an empty message.

GetNetworkInterfacesRespon
se

This message contains an array of device network interfaces.

tt:NetworkInterface NetworkInterfaces [0][unbounded]

Fault codes Description

No command specific faults!

ONVIF™ – 58 – ONVIF Core Spec. – Ver. 2.1.1

8.2.11 Set network interface configuration

This operation sets the network interface configuration on a device. The device shall support
network configuration of supported network interfaces through the SetNetworkInterfaces
command.

For interoperability with a client unaware of the IEEE 802.11 extension a device shall retain
its IEEE 802.11 configuration if the IEEE 802.11 configuration element isn’t present in the
request.

Table 24: SetNetworkInterfaces command

SetNetworkInterfaces Access Class: WRITE_SYSTEM

Message name Description

SetNetworkInterfacesRequest This message contains:
 “InterfaceToken”: The token of the network interface to operate

on.
 “NetworkInterface”: The network interface to configure.

tt:ReferenceToken InterfaceToken [1][1]
tt:NetworkInterfaceSetConfiguration NetworkInterface [1][1]

SetNetworkInterfacesRespon
se

This message contains:
 “RebootNeeded": An indication if a reboot is needed in case of

changes in the network settings.

xs:boolean RebootNeeded [1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidNetworkInterface

The supplied network interface token does not exist.

env:Sender
 ter:InvalidArgVal
 ter:InvalidMtuValue

The MTU value is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidInterfaceSpeed

The suggested speed is not supported.

env:Sender
 ter:InvalidArgVal
 ter:InvalidInterfaceType

The suggested network interface type is not supported.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

env:Receiver
 ter:ActionNotSupported
 ter:InvalidDot11

IEEE 802.11 Configuration is not supported.

env:Sender
 ter:InvalidArgVal
 ter:InvalidSecurityMode

The selected security mode is not supported.

env:Sender
 ter:InvalidArgVal
 ter:InvalidStationMode

The selected station mode is not supported.

ONVIF™ – 59 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:InvalidArgVal
 ter:MissingDot11

IEEE 802.11 value is missing in the security configuration.

env:Sender
 ter:InvalidArgVal
 ter:MissingPSK

PSK value is missing in security configuration.

env:Sender
 ter:InvalidArgVal
 ter:MissingDot1X

IEEE 802.1X value in security configuration is missing or none
existing.

env:Sender
 ter:InvalidArgVal
 ter:IncompatibleDot1X

IEEE 802.1X value in security configuration is incompatible with the
network interface.

8.2.12 Get network protocols

This operation gets defined network protocols from a device. The device shall support the
GetNetworkProtocols command returning configured network protocols.

Table 25: GetNetworkProtocols command

GetNetworkProtocols Access Class: READ_SYSTEM

Message name Description

GetNetworkProtocolsRequest This is an empty message.

GetNetworkProtocols-
Response

This message returns an array of defined protocols supported by the
device. There are three protocols defined, HTTP, HTTPS and RTSP.
The following parameters can be retrieved for each protocol:

 Port
 Enable/disable

tt:NetworkProtocol NetworkProtocols [0][unbounded]

Fault codes Description

No command specific faults!

ONVIF™ – 60 – ONVIF Core Spec. – Ver. 2.1.1

8.2.13 Set network protocols

This operation configures defined network protocols on a device. The device shall support
configuration of defined network protocols through the SetNetworkProtocols command.

Table 26: SetNetworkProtocols command

SetNetworkProtocols Access Class: WRITE_SYSTEM

Message name Description

SetNetworkProtocolsRequest This message configures one or more defined network protocols
supported by the device. There are currently three protocols defined,
HTTP, HTTPS and RTSP. The following parameters can be set for
each protocol:

 Port
 Enable/disable

tt:NetworkProtocol NetworkProtocols [1][unbounded]

SetNetworkProtocols-
Response

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:ServiceNotSupported

The supplied network service is not supported.

env:Sender
 ter:InvalidArgVal
 ter:PortAlreadyInUse

The selected port is already in use.

env:Receiver
 ter:ActionNotSupported
 ter:EnablingTlsFailed

The device doesn't support TLS or TLS is not configured appropriately.

8.2.14 Get default gateway

This operation gets the default gateway settings from a device. The device shall support the
GetNetworkDefaultGateway command returning configured default gateway address(es).

Table 27: GetNetworkDefaultGateway command

GetNetworkDefaultGateway Access Class: READ_SYSTEM

Message name Description

GetNetworkDefaultGateway-
Request

This is an empty message.

GetNetworkDefaultGateway-
Response

This message contains:
 “IPv4Address”: The default IPv4 gateway address(es).
 “IPv6Address”: The default IPv6 gateway address(es).

tt:IPv4Address IPv4Address [0][unbounded]
tt:IPv6Address IPv6Address [0][unbounded]

Fault codes Description

No command specific faults!

ONVIF™ – 61 – ONVIF Core Spec. – Ver. 2.1.1

8.2.15 Set default gateway

This operation sets the default gateway settings on a device. The device shall support
configuration of default gateway through the SetNetworkDefaultGateway command.

Table 28: SetNetworkDefaultGateway command

SetNetworkDefaultGateway Access Class: WRITE_SYSTEM

Message name Description

SetNetworkDefaultGateway-
Request

This message contains:
 “IPv4Address”: The default IPv4 gateway address(es).
 “IPv6Address”: The default IPv6 gateway address(es).

tt:IPv4Address IPv4Address [0][unbounded]
tt:IPv6Address IPv6Address [0][unbounded]

SetNetworkDefaultGateway-
Response

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidGatewayAddress

The supplied gateway address was invalid.

8.2.16 Get zero configuration

This operation gets the zero-configuration from a device. If the device supports dynamic IP
configuration according to [RFC3927], it shall support the return of IPv4 zero configuration
address and status through the GetZeroConfiguration command

Table 29: GetZeroConfiguration command

GetZeroConfiguration Access Class: READ_SYSTEM

Message name Description

GetZeroConfigurationRequest This is an empty message.

GetZeroConfigurationRespon
se

This message contains:
 “InterfaceToken”: The token of the network interface
 “Enabled”: If zero configuration is enabled or not.
 “Addresses”: The IPv4 zero configuration address(es).

tt:ReferenceToken InterfaceToken [1][1]
xs:boolean Enabled [1][1]
tt:IPv4Addresses Address [0][unbounded]

Fault codes Description

 No command specific faults!

8.2.17 Set zero configuration

This operation sets the zero-configuration on the device. If the device supports dynamic IP
configuration according to [RFC 3927], it shall support the configuration of IPv4 zero
configuration address and status through the SetZeroConfiguration command.

ONVIF™ – 62 – ONVIF Core Spec. – Ver. 2.1.1

Table 30: SetZeroConfiguration command

SetZeroConfiguration Access Class: WRITE_SYSTEM

Message name Description

SetZeroConfigurationRequest This message contains:

 “InterfaceToken”: The token of the network interface to operate
on.

 “Enabled”: If zero configuration is enabled or not.

tt:ReferenceToken InterfaceToken [1][1]
xs:boolean Enabled [1][1]

SetZeroConfigurationRespons
e

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidNetworkInterface

The supplied network interface token does not exists

8.2.18 Get IP address filter

This operation gets the IP address filter settings from a device. If the device supports device
access control based on IP filtering rules (denied or accepted ranges of IP addresses), the
device shall support the GetIPAddressFilter command.

Table 31:GetIPAddressFilter command

GetIPAddressFilter Access Class: READ_SYSTEM

Message name Description

GetIPAddressFilterRequest This is an empty message.

GetIPAddressFilterResponse This message contains:
 “Type”: Sets if the filter should deny or allow access.
 “IPv4Address”: The IPv4 filter address(es)
 “IPv6Address”: The IPv6 filter address(es)

tt:IPAddressFilterType Type [1][1]
tt:PrefixedIPv4Address IPv4Address [0][unbounded]
tt:PrefixedIPv6Address IPv6Address [0][unbounded]

Fault codes Description

 No command specific faults!

8.2.19 Set IP address filter

This operation sets the IP address filter settings on a device. If the device supports device
access control based on IP filtering rules (denied or accepted ranges of IP addresses), the
device shall support configuration of IP filtering rules through the SetIPAddressFilter
command.

ONVIF™ – 63 – ONVIF Core Spec. – Ver. 2.1.1

Table 32: SetIPAddressFilter command

SetIPAddressFilter Access Class: WRITE_SYSTEM

Message name Description

SetIPAddressFilterRequest This message contains:
 “Type”: Sets if the filter should deny or allow access.
 “IPv4Address”: The IPv4 filter address(es)
 “IPv6Address”: The IPv6 filter address(es)

tt:IPAddressFilterType Type [1][1]
tt:PrefixedIPv4Address IPv4Address [0][unbounded]
tt:PrefixedIPv6Address IPv6Address [0][unbounded]

SetIPAddressFilterResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

8.2.20 Add an IP filter address

This operation adds an IP filter address to a device. If the device supports device access
control based on IP filtering rules (denied or accepted ranges of IP addresses), the device
shall support adding of IP filtering addresses through the AddIPAddressFilter command.

The value of the Type field shall be ignored by the device. Use SetIPAddressFilter to set the
type.

Table 33: AddIPAddressFilter command

AddIPAddressFilter Access Class: WRITE_SYSTEM

Message name Description

AddIPAddressFilterRequest This message contains:
 Type”: Sets if the filter should deny or allow access.
 “IPv4Address”: The IPv4 filter address(es)
 “IPv6Address”: The IPv6 filter address(es)

tt:IPAddressFilterType Type [1][1]
tt:PrefixedIPv4Address IPv4Address [0][unbounded]
tt:PrefixedIPv6Address IPv6Address [0][unbounded]

AddIPAddressFilterResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:IPFilterListIsFull

It is not possible to add more IP filters since the IP filter list is full.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

ONVIF™ – 64 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

8.2.21 Remove an IP filter address

This operation deletes an IP filter address from a device. If the device supports device access
control based on IP filtering rules (denied or accepted ranges of IP addresses), the device
shall support deletion of IP filtering addresses through the RemoveIPAddressFilter command.

The value of the Type field shall be ignored by the device.

Table 34: RemoveIPAddressFilter command

RemoveIPAddressFilter Access Class: WRITE_SYSTEM

Message name Description

RemoveIPAddressFilter-
Request

This message contains:
 “Type”: Value of this field is ignored in this command.
 “IPv4Address”: The IPv4 filter address(es)
 “IPv6Address”: The IPv6 filter address(es)

tt:IPAddressFilterType Type [1][1]
tt:PrefixedIPv4Address IPv4Address [0][unbounded]
tt:PrefixedIPv6Address IPv6Address [0][unbounded]

RemoveIPAddressFilter-
Response

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv6Address

The suggested IPv6 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:InvalidIPv4Address

The suggested IPv4 address is invalid.

env:Sender
 ter:InvalidArgVal
 ter:NoIPv6Address

The IPv6 address to be removed does not exist.

env:Sender
 ter:InvalidArgVal
 ter:NoIPv4Address

The IPv4 address to be removed does not exist.

ONVIF™ – 65 – ONVIF Core Spec. – Ver. 2.1.1

8.2.22 IEEE 802.11 configuration

Requirements in this section and subsections are only valid for a device that signals IEEE
802.11 support via its Network Dot11Configuration capability. in this section and subsections
the term “the device” is used to indicate a device with IEEE 802.11 support.

The device shall support IEEE 802.11 configuration and shall as a response to the
GetNetworkInterfaces method return ieee80211 (71) as the IANA-IfTypes for the 802.11
interface(s).

A device shall not return any link element in the GetNetworkInterfaces reply and it shall ignore
any Link element in the SetNetworkInterfaces request.

The device should support that each IEEE 802.11 network interface can have more than one
alternative IEEE 802.11 configurations attached to it.

IEEE 802.11 configuration is supported through an optional IEEE 802.11 configuration
element in the get and set network configuration element. The following information is
handled:

 SSID
 Station mode
 Multiple wireless network configuration
 Security configuration

The following operations are used to help manage the wireless configuration:

 Get IEEE802.11 capabilities
 Get IEEE802.11 status
 Scan available IEEE802.11 networks

8.2.22.1 SSID

The device shall support configuration of the SSID.

8.2.22.2 Station Mode

The device shall support the infrastructure station mode.

The device may support the ad-hoc network station mode. The actual configuration needed
for ad-hoc network station mode, including manual configuration of the channel number, is
outside the scope of this specification; But to allow for devices that support ad-hoc network
station modes, the specification allows for selecting (and reporting) this mode.

8.2.22.3 Multiple wireless network configuration

Each IEEE 802.11 configuration shall be identified with an alias (identifier). The alias shall be
unique within a network interface configuration. The client shall supply the alias in the
SetNetworkInterfaces request. If the client wants to update an existing wireless configuration
the same alias shall be used. A wireless configuration, including the alias, shall only exist
while it’s part of a network interface configuration.

For the device to be able to prioritize between multiple alternative IEEE802.11 configurations
an optional priority value can be used, a higher value means a higher priority. If several

ONVIF™ – 66 – ONVIF Core Spec. – Ver. 2.1.1

wireless configurations have the same priority value the order between those configurations is
undefined.

The actual algorithm used by the device to enable an IEEE 802.11 network from the
prioritized list of IEEE 802.11 configurations is outside the scope of this specification.

8.2.22.4 Security configuration

The security configuration contains the chosen security mode and the configuration needed
for that mode. The following security modes are supported:

 None
 PSK (Pre Shared Key) (WPA- and WPA2-Personal)
 IEEE 802.1X-2004 (WPA- and WPA2-Enterpise)

Configuration of WEP security mode is outside the scope of this speciation but to allow for
devices that support WEP security mode this specification allows for selecting (and reporting)
this mode.

For data confidentiality and integrity the device shall, in accordance with the [IEEE 802.11-
2007] specification, support the CCMP algorithm and the device may support the TKIP
algorithm.

The algorithm can either be manually (CCMP, TKIP) or automatically (Any) selected. In
manual selected mode the same algorithm shall be used for both the pairwise and group
cipher. To be able to support other algorithms an “Extended” value is available.

The device shall support both the manually and the automatically selected mode.

8.2.22.4.1 None mode

The device shall support the “None” security mode.

8.2.22.4.2 PSK mode

The device shall support the PSK security mode.

To minimise the risk for compromising the PSK the device should not transmit any PSK to a
client, furthermore it shall not return the PSK in a response to a GetNetworkInterfaces
operation call.

For adding a wireless configuration with the PSK security mode the following rules applies:

 A client shall include a PSK value in the SetNetworkInterfaces request
 The device shall check so that a PSK value was supplied, if not the device shall return an

error.

For updating wireless configuration with the PSK security mode the following rules applies:

 If the client wants to retain the PSK value it should not include the PSK value in the
SetNetworkInterfaces request

 The device receiving a SetNetworkInterfaces request without a PSK value shall retain its PSK
value

The [IEEE 802.11-2007] standard states that the PSK should be distributed to the STA with
some out-of-band method. In ONVIF the security policy shall make sure that the PSK is
sufficiently protected.

ONVIF™ – 67 – ONVIF Core Spec. – Ver. 2.1.1

8.2.22.4.3 IEEE 802.1X-2004 Mode

The device should support the IEEE 802.1X security mode. For more detailed requirements
about the IEEE 802.1X-2004 security mode see [IEEE 802.1X configuration]

8.2.22.5 Get Dot11 capabilities

This operation returns the IEEE802.11 capabilities, see Table 36. The device shall support
this operation.

Table 35: GetDot11Capabilities

GetDot11Capabilities Access Class: READ_SYSTEM

Message name Description

GetDot11Capabilities-
Request

This is an empty message

GetDot11Capabilites-
Response

tt:Dot11Capabilities Capabilities [1][1]

Fault codes Description

env:Receiver
 ter:ActionNotSupported
 ter:InvalidDot11

IEEE 802.11 configuration is not supported.

Table 36: IEEE802.11 capabilities

Capability Description

TKIP Indication if the device supports the TKIP algorithm.

ScanAvailableNetworks Indication if the device supports the
ScanAvailableIEEE802.11Networks operation.

MultipleConfiguration Indication if the device supports multiple alternative IEEE 802.11
configurations.

AdHocStationMode Indication if the device supports the Ad-Hoc station mode.

WEP Indication if the device supports the WEP security mode.

8.2.22.6 Get IEEE 802.11 Status

This operation returns the status of a wireless network interface. The device shall support this
command. The following status can be returned:

 SSID (shall)

 BSSID (should)

 Pair cipher (should)

 Group cipher (should)

ONVIF™ – 68 – ONVIF Core Spec. – Ver. 2.1.1

 Signal strength (should)

 Alias of active wireless configuration (shall)

Table 37: GetDot11Status

GetDot11Status Access Class: READ_SYSTEM

Message name Description

GetDot11StatusRequest tt:ReferenceToken InterfaceToken [1][1]

GetDot11StatusResponse tt:Dot11Status Status [1][1]

Fault codes Description

env:Receiver
 ter:ActionNotSupported
 ter:InvalidDot11

IEEE 802.11 configuration is not supported.

env:Sender
 ter:InvalidArgVal
 ter:NotDot11

The interface is not an IEEE 802.11 interface.

env:Sender
 ter:InvalidArgVal
 ter:InvalidNetworkInterface

The supplied network interface token does not exist.

env:Receiver
 ter:Action
 ter:NotConnectedDot11

IEEE 802.11 network is not connected.

8.2.22.7 Scan Available IEEE 802.11 Networks

This operation returns a lists of the wireless networks in range of the device. A device should
support this operation. The following status can be returned for each network:

 SSID (shall)

 BSSID (should)

 Authentication and key management suite(s) (should)

 Pair cipher(s) (should)

 Group cipher(s) (should)

 Signal strength (should)

Table 38: ScanAvailableDot11Networks

ScanAvailableDot11Networks Access Class: READ_SYSTEM

Message name Description

ScanAvailableDot11-
NetworksRequest

tt:ReferenceToken InterfaceToken [1][1]

ScanAvailableDot11-
NetworksResponse

tt:Dot11AvailableNetworks Networks [0][unbounded]

Fault codes Description

ONVIF™ – 69 – ONVIF Core Spec. – Ver. 2.1.1

env:Receiver
 ter:ActionNotSupported
 ter:InvalidDot11

IEEE 802.11 configuration is not supported.

env:Sender
 ter:InvalidArgVal
 ter:NotDot11

The interface is not an IEEE 802.11 interface.

env:Sender
 ter:InvalidArgVal
 ter:InvalidNetworkInterface

The supplied network interface token does not exist.

env;Receiver
 ter:ActionNotSupported
 ter:NotScanAvailable

ScanAvailableDot11Networks is not supported.

8.3 System

8.3.1 Device Information

This operation gets device information, such as manufacturer, model and firmware version
from a device. The device shall support the return of device information through the
GetDeviceInformation command.

Table 39: GetDeviceInformation command

GetDeviceInformation Access Class: READ_SYSTEM

Message name Description

GetDeviceInformationRequest This is an empty message.

GetDeviceInformationRespon
se

The get device information response message returns following device
information:
xs:string Manufacturer [1][1]
xs:string Model [1][1]
xs:string FirmwareVersion [1][1]
xs:string SerialNumber [1][1]
xs:string HardwareId [1][1]

Fault codes Description

 No command specific faults!

8.3.2 Get System URIs

This operation is used to retrieve URIs from which system information may be downloaded
using HTTP. URIs may be returned for the following system information:

System Logs. Multiple system logs may be returned, of different types. The exact format of
the system logs is outside the scope of this specification.

Support Information. This consists of arbitrary device diagnostics information from a device.
The exact format of the diagnostic information is outside the scope of this specification.

System Backup. The received file is a backup file that can be used to restore the current
device configuration at a later date. The exact format of the backup configuration file is
outside the scope of this specification.

ONVIF™ – 70 – ONVIF Core Spec. – Ver. 2.1.1

If the device allows retrieval of system logs, support information or system backup data, it
should make them available via HTTP GET. If it does, it shall support the GetSystemUris
command.

Table 40: GetSystemUris command

GetSystemUris Access Class: READ_SYSTEM

Message name Description

GetSystemUrisRequest This is an empty message.

GetSystemUrisResponse This message contains the URIs from which the various system
information components may be downloaded.

tt:SystemLogUriList SystemLogUris [0][1]
xs:anyURI SupportInfoUri [0][1]
xs:anyURI SystemBackupUri [0][1]

Fault codes Description

 No command specific faults!

8.3.3 Backup

This operation is retrieves system backup configuration file(s) from a device. The device
should support return of back up configuration file(s) through the GetSystemBackup command.
The backup is returned with reference to a name and mime-type together with binary data.
The exact format of the backup configuration files is outside the scope of this standard.

The backup configuration file(s) are transmitted through MTOM [MTOM].

Table 41: GetSystemBackup command

GetSystemBackup Access Class: WRITE_SYSTEM_SECRET

Message name Description

GetSystemBackupRequest This is an empty message.

GetSystemBackupResponse The get system backup response message contains the system
backup configuration files(s).

 tt:BackupFile BackupFiles [1][unbounded]

Fault codes Description

No command specific faults!

8.3.4 Restore

This operation restores the system backup configuration files(s) previously retrieved from a
device. The device should support restore of backup configuration file(s) through the
RestoreSystem command. The exact format of the backup configuration file(s) is outside the
scope of this standard. If the command is supported, it shall accept backup files returned by
the GetSystemBackup command.

The back up configuration file(s) are transmitted through MTOM [MTOM].

ONVIF™ – 71 – ONVIF Core Spec. – Ver. 2.1.1

Table 42: RestoreSystem command

RestoreSystem Access Class: UNRECOVERABLE

Message name Description

RestoreSystemRequest This message contains the system backup file(s).

tt:BackupFile BackupFiles [1][unbounded]

RestoreSystemResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidBackupFile

The backup file(s) are invalid.

8.3.5 Start system restore

This operation initiates a system restore from backed up configuration data using the HTTP
POST mechanism. The response to the command includes an HTTP URL to which the backup
file may be uploaded. The actual restore takes place as soon as the HTTP POST operation
has completed. Devices should support system restore through the StartSystemRestore
command. The exact format of the backup configuration data is outside the scope of this
specification.

System restore over HTTP may be achieved using the following steps:

1. Client calls StartSystemRestore.

2. Device service responds with upload URI.

3. Client transmits the configuration data to the upload URI using HTTP POST.

4. Server applies the uploaded configuration, then reboots if necessary.

If the system restore fails because the uploaded file was invalid, the HTTP POST response
shall be “415 Unsupported Media Type”. If the system restore fails due to an error at the
device, the HTTP POST response shall be “500 Internal Server Error”.

The value of the Content-Type header in the HTTP POST request shall be “application/octet-
stream”.

Table 43: StartSystemRestore command

StartSystemRestore Access Class: UNRECOVERABLE

Message name Description

StartSystemRestoreRequest This is an empty message

StartSystemRestoreResponse This message contains
 A URL to which the system configuration file may be uploaded.
 An optional duration that indicates how long the device expects to

be unavailable after the upload is complete.

xs:anyURI UploadUri [1][1]
xs:duration ExpectedDownTime [0][1]

Fault codes Description

ONVIF™ – 72 – ONVIF Core Spec. – Ver. 2.1.1

 No command-specific faults.

8.3.6 Get system date and time

This operation gets the device system date and time. The device shall support the return of
the daylight saving setting and of the manual system date and time (if applicable) or indication
of NTP time (if applicable) through the GetSystemDateAndTime command.

A device shall provide the UTCDateTime information although the item is marked as optional
to ensure backward compatibility.

Table 44: GetSystemDateAndTime command

GetSystemDateAndTime Access Class: PRE_AUTH

Message name Description

GetSystemDateAndTime-
Request

This is an empty message.

GetSystemDateAndTime-
Response

This message contains the date and time information of the device.

 “DateTimeType”: If the system time and date are set manually
or by NTP

 “DaylightSavings”: Daylight savings on or off
 "TimeZone": The time zone as it is defined in POSIX 1003.1

section 8.3
 “UTCDateTime”: The time and date in UTC.
 “LocalDateTime”: The local time and date of the device

tt:SetDateTimeType DateTimeType [1][1]
xs:boolean DayLightSavings [1][1]
tt:TimeZone TimeZone [0][1]
tt:DateTime UTCDateTime [0][1]
tt:DateTime LocalDateTime [0][1]

Fault codes Description

 No command specific faults!

8.3.7 Set system date and time

This operation sets the device system date and time. The device shall support the
configuration of the daylight saving setting and of the manual system date and time (if
applicable) or indication of NTP time (if applicable) through the SetSystemDateAndTime
command. A device shall consider a Timezone which is not formed according to the rules of
[IEEE 1003.1] section 8.3 as invalid.

If system time and date are set manually, the client shall include UTCDateTime or
LocalDateTime in the request.

The DayLightSavings flag should be set to true to activate any DST settings of the TimeZone
string. Clear the DayLightSavings flag if the DST portion of the TimeZone settings should be
ignored.

ONVIF™ – 73 – ONVIF Core Spec. – Ver. 2.1.1

Table 45: SetSystemDateAndTime command

SetSystemDateAndTime Access Class: WRITE_SYSTEM

Message name Description

SetSystemDateAndTime-
Request

This message contains the date and time information of the device.

 “DateTimeType”: If the system time and date are set manually
or by NTP

 “DaylightSavings”: Automatically adjust Daylight savings if
defined in TimeZone.

 "TimeZone": The time zone is defined in POSIX 1003.1
section 8.3

 “UTCDateTime”: The time and date in UTC. If DateTimeType
is NTP, UTCDateTime has no meaning.

tt:SetDateTimeType DateTimeType [1][1]
xs:boolean DayLightSavings [1][1]
tt:TimeZone TimeZone [0][1]
tt:DateTime UTCDateTime [0][1]

SetSystemDateAndTime-
Response

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:InvalidTimeZone

An invalid time zone was specified.

env:Sender
 ter:InvalidArgVal
 ter:InvalidDateTime

An invalid date or time was specified.

env:Sender
 ter:InvalidArgVal
 ter:NtpServerUndefined

Cannot switch DateTimeType to NTP because no NTP server is
defined.

8.3.8 Factory default

This operation reloads parameters of a device to their factory default values. The device shall
support hard and soft factory default through the SetSystemFactoryDefault command. The
meaning of soft factory default is device product-specific and vendor-specific. The effect of a
soft factory default operation is not fully defined. However, it shall be guaranteed that after a
soft reset the device is reachable on the same IP address as used before the reset. This
means that basic network settings like IP address, subnet and gateway or DHCP settings are
kept unchanged by the soft reset.

ONVIF™ – 74 – ONVIF Core Spec. – Ver. 2.1.1

Table 46: SetSystemFactoryDefault command

SetSystemFactoryDefault Access Class: UNRECOVERABLE

Message name Description

SetSystemFactoryDefault-
Request

This message contains the types of factory default to perform.

 “Hard”: All parameters are set to their factory default value
 “Soft”: All parameters except device vendor specific

parameters are set to their factory default values

tt:FactoryDefaultType FactoryDefault [1][1]

SetSystemFactoryDefault-
Response

This is an empty message.

Fault codes Description

No command specific faults!

8.3.9 Firmware upgrade

This operation upgrades a device firmware version. After a successful upgrade the response
message is sent before the device reboots. The device should support firmware upgrade
through the UpgradeSystemFirmware command. The exact format of the firmware data is
outside the scope of this standard.

The firmware is transmitted through MTOM [MTOM].

Table 47: UpgradeSystemFirmware command

UpgradeSystemFirmware Access Class: UNRECOVERABLE

Message name Description

UpgradeSystemFirmware-
Request

This message contains the firmware used for the upgrade. The
firmware upgrade is “soft” meaning that all parameters keep their
current value.

tt:AttachmentData Firmware [1][1]

UpgradeSystemFirmware-
Response

This message contains a “Message” string allowing the device to
report back a message to the client as for an example “Upgrade
successful, rebooting in x seconds.”

xs:string Message [1][1]

Fault codes Description

env:Sender
 ter:InvalidArgs
 ter:InvalidFirmware

The firmware was invalid, i.e., not supported by this device.

env:Receiver
 ter:Action
 ter:FirmwareUpgrade-
 Failed

The firmware upgrade failed.

ONVIF™ – 75 – ONVIF Core Spec. – Ver. 2.1.1

8.3.10 Start firmware upgrade

This operation initiates a firmware upgrade using the HTTP POST mechanism. The response
to the command includes an HTTP URL to which the upgrade file may be uploaded. The
actual upgrade takes place as soon as the HTTP POST operation has completed. The device
should support firmware upgrade through the StartFirmwareUpgrade command. The exact
format of the firmware data is outside the scope of this specification.

Firmware upgrade over HTTP may be achieved using the following steps:

1. Client calls StartFirmwareUpgrade.

2. Device service responds with upload URI and optional delay value.

3. Client waits for delay duration if specified by server.

4. Client transmits the firmware image to the upload URI using HTTP POST.

5. Server reprograms itself using the uploaded image, then reboots.

If the firmware upgrade fails because the upgrade file was invalid, the HTTP POST response
shall be “415 Unsupported Media Type”. If the firmware upgrade fails due to an error at the
device, the HTTP POST response shall be “500 Internal Server Error”.

The value of the Content-Type header in the HTTP POST request shall be “application/octet-
stream”.

Table 48: StartFirmwareUpgrade command

StartFirmwareUpgrade Access Class: UNRECOVERABLE

Message name Description

StartFirmwareUpgrade-
Request

This is an empty message

StartFirmwareUpgrade-
Response

This message contains:
 A URL to which the firmware file may be uploaded.
 An optional delay; the client shall wait for this amount of time

before initiating the firmware upload.
 A duration that indicates how long the device expects to be

unavailable after the firmware upload is complete.

xs:anyURI UploadUri [1][1]
xs:duration UploadDelay [0][1]
xs:duration ExpectedDownTime [0][1]

Fault codes Description

 No command-specific faults.

8.3.11 Get system logs

This operation gets a system log from a device. The device should support system log
information retrieval through the GetSystemLog command. The exact format of the system
logs is outside the scope of this standard.

The system log information is transmitted through MTOM [MTOM] or as a string.

ONVIF™ – 76 – ONVIF Core Spec. – Ver. 2.1.1

Table 49: GetSystemLog command

GetSystemLog Access Class: READ_SYSTEM_SECRET

Message name Description

GetSystemLogRequest This message contains the type of system log to retrieve. The types of
supported log information is defined in two different types:

 “System”: The system log
 “Access”: The client access log

tt:SystemLogType LogType [1][1]

GetSystemLogResponse

This message contains the requested system log information. The
device can choose if it wants to return the system log information as
binary data in an attachment or as a common string.

tt:AttachmentData Binary [0][1]
xs:string String [0][1]

Fault codes Description

env:Sender
 ter:InvalidArgs
 ter:AccesslogUnavailable

There is no access log information available

env:Sender
 ter:InvalidArgs
 ter:SystemlogUnavailable

There is no system log information available

8.3.12 Get support information

This operation gets arbitrary device diagnostics information from a device. The device may
support retrieval of diagnostics information through the GetSystemSupportInformation
command. The exact format of the diagnostic information is outside the scope of this standard.

The diagnostics information is transmitted as an attachment through MTOM [MTOM] or as
string.

Table 50: GetSystemSupportInformation command

GetSystemSupportInformation Access Class: READ_SYSTEM

Message name Description

GetSystemSupport-
InformationRequest

This is an empty message.

GetSystemSupport-
Information Response

The message contains the support information. The device can choose
if it wants to return the support information as binary data or as a
common string.

tt:AttachmentData BinaryFormat [0][1]
xs:string StringFormat [0][1]

Fault codes Description

env:Sender
 ter:InvalidArgs
 ter:SupportInformation-
 Unavailable

There is no support information available.

ONVIF™ – 77 – ONVIF Core Spec. – Ver. 2.1.1

8.3.13 Reboot

This operation reboots a device. Before the device reboots the response message shall be
sent. The device shall support reboot through the SystemReboot command.

Table 51: SystemReboot command

SystemReboot Access Class: ACTUATE

Message name Description

SystemReboot This is an empty message.

SystemRebootResponse This message contains a “Message” string allowing the device to
report back a message to the client as for an example “Rebooting in x
seconds.”

xs:string Message [1][1]

Fault codes Description

 No command specific faults!

8.3.14 Get scope parameters

This operation requests the scope parameters of a device. The scope parameters are used in
the device discovery to match a probe message, see Section 7. The Scope parameters are of
two different types:

 Fixed

 Configurable

Fixed scope parameters cannot be altered through the device management interface but are
permanent device characteristics part of the device firmware configurations. The scope type is
indicated in the scope list returned in the get scope parameters response. Configurable scope
parameters can be set throught the set and add scope parameters operations, see Section
8.3.14 and Section 8.3.15. The device shall support retrieval of discovery scope parameters
through the GetScopes command. As some scope parameters are mandatory, the client
always expects a scope list in the response.

Table 52: GetScopes command

GetScopes Access Class: READ_SYSTEM

Message name Description

GetScopesRequest This is an empty message.

GetScopesResponse The scope response message contains a list of URIs defining the
device scopes. See also Section 7 for the ONVIF scope definitions.

tt:Scope: Scopes [1][unbounded]

Fault codes Description

env:Receiver
 ter:Action
 ter:EmptyScope

Scope list is empty.

ONVIF™ – 78 – ONVIF Core Spec. – Ver. 2.1.1

8.3.15 Set scope parameters

This operation sets the scope parameters of a device. The scope parameters are used in the
device discovery to match a probe message, see Section 7.

This operation replaces all existing configurable scope parameters (not fixed parameters). If
this shall be avoided, one should use the scope add command instead. The device shall
support configuration of discovery scope parameters through the SetScopes command.

Table 53: SetScopes command

SetScopes Access Class: WRITE_SYSTEM

Message name Description

SetScopesRequest The set scope contains a list of URIs defining the device scope. See
also Section 7.

xs:anyURI: Scopes [1][unbounded]

SetScopesResponse This is an empty message.

Fault codes Description

env:Sender
 ter:OperationProhibited
 ter:ScopeOverwrite

Scope parameter overwrites fixed device scope setting, command
rejected.

env:Receiver
 ter:Action
 ter:TooManyScopes

The requested scope list exceeds the supported number of scopes.

8.3.16 Add scope parameters

This operation adds new configurable scope parameters to a device. The scope parameters
are used in the device discovery to match a probe message, see Section 7. The device shall
support addition of discovery scope parameters through the AddScopes command.

Table 54: AddScopes command

AddScopes Access Class: WRITE_SYSTEM

Message name Description

AddScopesRequest The add scope contains a list of URIs to be added to the existing
configurable scope list. See also Section 7..

 xs:anyURI:ScopeItem [1][unbounded]

AddScopesResponse This is an empty message.

Fault codes Description

env:Receiver
 ter:Action
 ter:TooManyScopes

The requested scope list exceeds the supported number of scopes.

8.3.17 Remove scope parameters

This operation deletes scope-configurable scope parameters from a device. The scope
parameters are used in the device discovery to match a probe message, see Section 7. The

ONVIF™ – 79 – ONVIF Core Spec. – Ver. 2.1.1

device shall support deletion of discovery scope parameters through the RemoveScopes
command.

Note that the response message always will match the request or an error will be returned.
The use of the response is for that reason deprecated.

Table 55: RemoveScopes command

RemoveScopes Access Class: WRITE_SYSTEM

Message name Description

RemoveScopesRequest The remove scope contains a list of URIs that should be removed from
the device scope.

 xs:anyURI: ScopeItem [1][unbounded]

RemoveScopesResponse The scope response message contains a list of URIs that has been
Removed from the device scope.

xs:anyURI: ScopeItem [0][unbounded]

Fault codes Description

env:Sender
 ter:OperationProhibited
 ter:FixedScope

Trying to Remove fixed scope parameter, command rejected.

env:Sender
 ter:InvalidArgVal
 ter:NoScope

Trying to Remove scope which does not exist.

8.3.18 Get discovery mode

This operation gets the discovery mode of a device. See Section 7.2 for the definition of the
different device discovery modes. The device shall support retrieval of the discovery mode
setting through the GetDiscoveryMode command.

Table 56: GetDiscoveryMode command

GetDiscoveryMode Access Class: READ_SYSTEM

Message name Description

GetDiscoveryModeRequest This is an empty message.

GetDiscoveryModeResponse This message contains the current discovery mode setting, i.e.
discoverable or non-discoverable.

 tt:DiscoveryMode: DiscoveryMode [1][1]

Fault codes Description

 No command specific faults!

8.3.19 Set discovery mode

This operation sets the discovery mode operation of a device. See Section 7.2 for the
definition of the different device discovery modes. The device shall support configuration of
the discovery mode setting through the SetDiscoveryMode command.

ONVIF™ – 80 – ONVIF Core Spec. – Ver. 2.1.1

Table 57: SetDiscoveryMode command

SetDiscoveryMode Access Class: WRITE_SYSTEM

Message name Description

SetDiscoveryModeRequest This message contains the requested discovery mode setting, i.e.
discoverable or non-discoverable.

 tt:DiscoveryMode: DiscoveryMode [1][1]

SetDiscoveryModeResponse This is an empty message.

Fault codes Description

No command specific faults!

8.3.20 Get remote discovery mode

This operation gets the remote discovery mode of a device. See Section 7.4 for the definition
of remote discovery extensions. A device that supports remote discovery shall support
retrieval of the remote discovery mode setting through the GetRemoteDiscoveryMode
command.

Table 58: GetRemoteDiscoveryMode command

GetRemoteDiscoveryMode Access Class: READ_SYSTEM

Message name Description

GetRemoteDiscoveryMode-
Request

This is an empty message.

GetRemoteDiscoveryMode-
Response

This message contains the current remote discovery mode setting, i.e.
discoverable or non-discoverable.

 tt:DiscoveryMode: RemoteDiscoveryMode [1][1]

Fault codes Description

 No command specific faults!

8.3.21 Set remote discovery mode

This operation sets the remote discovery mode of operation of a device. See Section 7.4 for
the definition of remote discovery remote extensions. A device that supports remote discovery
shall support configuration of the discovery mode setting through the
SetRemoteDiscoveryMode command.

Table 59: SetRemoteDiscoveryMode command

SetRemoteDiscoveryMode Access Class: WRITE_SYSTEM

Message name Description

SetRemoteDiscoveryMode-
Request

This message contains the requested remote discovery mode setting,
i.e. discoverable or non-discoverable.

 tt:DiscoveryMode: RemoteDiscoveryMode [1][1]

ONVIF™ – 81 – ONVIF Core Spec. – Ver. 2.1.1

SetRemoteDiscoveryMode-
Response

This is an empty message.

Fault codes Description

No command specific faults!

8.3.22 Get remote DP addresses

This operation gets the remote DP address or addresses from a device. If the device supports
remote discovery, as specified in Section 7.4, the device shall support retrieval of the remote
DP address(es) through the GetDPAddresses command.

Table 60: GetDPAddresses command

GetDPAddresses Access Class: READ_SYSTEM

Message name Description

GetDPAddressesRequest This is an empty message.

GetDPAddressesResponse This message contains the device configured remote DP address or
addresses. If no remote DP address is configured, an empty list is
returned.

 tt:NetworkHost: DPAddress [0][unbounded]

Fault codes Description

No command specific faults!

8.3.23 Set remote DP addresses

This operation sets the remote DP address or addresses on a device. If the device supports
remote discovery, as specified in Section 7.4, the device shall support configuration of the
remote DP address(es) through the SetDPAddresses command.

Table 61: SetDPAddresses command

SetDPAddresses Access Class: WRITE_SYSTEM

Message name Description

SetDPAddressesRequest This message contains the device configured remote DP address or
addresses.

 tt:NetworkHost: DPAddress [0][unbounded]

SetDPAddressesResponse This is an empty message.

Fault codes Description

 No command specific faults!

ONVIF™ – 82 – ONVIF Core Spec. – Ver. 2.1.1

8.4 Security

This section contains a set of security management operations. Such operations are sensitive
to network attacks and shall be protected using appropriate authorization levels in order not to
compromise the device.

8.4.1 Get access policy

Access to different services and sub-sets of services should be subject to access control.
Section 5.12 gives the prerequisite for end-point authentication. Authorization decisions can
then be taken using an access security policy. This standard does not mandate any particular
policy description format or security policy but this is up to the device manufacturer or system
provider to choose policy and policy description format of choice. However, an access policy
(in arbitrary format) can be requested using this command. If the device supports access
policy settings, then the device shall support this command.

Table 62: GetAccessPolicy command

GetAccessPolicy Access Class: READ_SYSTEM_SECRET

Message name Description

GetAccessPolicyRequest This is an empty message.

GetAccessPolicyResponse

This message contains the requested policy file.

tt:BinaryData PolicyFile [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:EmptyPolicy

The device policy file does not exist or it is empty.

8.4.2 Set access policy

This command sets the device access security policy (for more details on the access security
policy see the Get command, Section 8.4.1). If the device supports access policy settings
based on WS-Security authentication, then the device shall support this command.

Table 63: SetAccessPolicy command

SetAccessPolicy Access Class: WRITE_SYSTEM

Message name Description

SetAccessPolicyRequest This message contains the policy file to set.

tt:BinaryData PolicyFile [1][1]

SetAccessPolicyResponse

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgs
 ter:PolicyFormat

The requested policy cannot be set due to unknown policy format.

ONVIF™ – 83 – ONVIF Core Spec. – Ver. 2.1.1

8.4.3 Get users

This operation lists the registered users and along with their user levels. The device shall
support retrieval of registered device users and their credentials for authentication through the
GetUsers command.

Table 64: GetUsers command

GetUsers Access Class: READ_SYSTEM_SECRET

Message name Description

GetUsersRequest This is an empty message.

GetUsersResponse This message contains list of users and corresponding credentials.
Each entry includes:

 Username
 User level,

i.e, the username password is not included into the response.

 tt:User: User [0][unbounded]

Fault codes Description

 No command specific faults!

8.4.4 Create users

This operation creates new device users and corresponding credentials on a device for
authentication, see Section 5.12 for details. The device shall support creation of device users
and their credentials for authentication through the CreateUsers command. Either all users
are created successfully or a fault message shall be returned without creating any user.

ONVIF compliant devices are recommended to support password length of at least 28 bytes,
as clients may follow the password derivation mechanism which results in 'password
equivalent' of length 28 bytes, as described in 5.12.2.1.

Table 65: CreateUsers command

CreateUsers Access Class: WRITE_SYSTEM

Message name Description

CreateUsersRequest This message contains a user parameters element for a new user.
Each user entry includes:

 Username
 Password
 UserLevel

 tt:User: User [1][unbounded]

CreateUsersResponse This is an empty message.

Fault codes Description

env:Sender
 ter:OperationProhibited
 ter:UsernameClash

Username already exists.

ONVIF™ – 84 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:OperationProhibited
 ter:PasswordTooLong

The password is too long

env:Sender
 ter:OperationProhibited
 ter:UsernameTooLong

The username is too long

env:Sender
 ter:OperationProhibited
 ter:Password

Too weak password.

env:Receiver
 ter:Action
 ter:TooManyUsers

Maximum number of supported users exceeded.

env:Sender
 ter:OperationProhibited
 ter:AnonymousNotAllowed

User level anonymous is not allowed.

env:Sender
 ter:OperationProhibited
 ter:UsernameTooShort

The username is too short

8.4.5 Delete users

This operation deletes users on a device. The device shall support deletion of device users
and their credentials for authentication through the DeleteUsers command. A device may have
one or more fixed users that cannot be deleted to ensure access to the unit. Either all users are
deleted successfully or a fault message shall be returned and no users be deleted.

Table 66: DeleteUsers command

DeleteUsers Access Class: WRITE_SYSTEM

Message name Description

DeleteUsersRequest This message contains the name of the user or users to be deleted.

 xs:string: Username [1][unbounded]

DeleteUsersResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:UsernameMissing

Username not recognized.

env:Sender
 ter:InvalidArgVal
 ter:FixedUser

Username may not be deleted

8.4.6 Set users settings

This operation updates the settings for one or several users on a device for authentication,
see Sect. 5.12 for details. The device shall support update of device users and their
credentials through the SetUser command. Either all change requests are processed
successfully or a fault message shall be returned and no change requests be processed.

In case the optional password value is omitted the device will consider to clear the password.
If the device can not accept the password of zero length, the fault message of
"ter:PasswordTooWeak" will be returned.

ONVIF™ – 85 – ONVIF Core Spec. – Ver. 2.1.1

Table 67: SetUser command

SetUser Access Class: WRITE_SYSTEM

Message name Description

SetUserRequest This message contains a list of users and corresponding parameters to
be updated.

 Username
 Password
 UserLevel

 tt:User: User [1][unbounded]

SetUserResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:UsernameMissing

Username not recognized.

env:Sender
 ter:OperationProhibited
 ter:PasswordTooLong

The password is too long

env:Sender
 ter:OperationProhibited
 ter:PasswordTooWeak

Too weak password.

env:Sender
 ter:OperationProhibited
 ter:AnonymousNotAllowed

User level anonymous is not allowed.

8.4.7 IEEE 802.1X configuration

This specification defines the following parameters as a set of IEEE 802.1X configuration
parameters.

 Configuration Token

This parameter indicates a reference token of IEEE 802.1X configuration parameters
and is defined as 'Dot1XConfigurationToken' in [ONVIF Schema]. This naming
convention of 'Dot1X', which actually represents 'IEEE 802.1X' is used for better
readability of schema element in the generated source code.

 EAP Identity

This parameter indicates the user name of supplicant which connects to IEEE 802.1X
managed network. This is defined as 'Identity' in [ONVIF Schema].

 EAP method

This parameter indicates authentication method used. This is defined as 'EAPMethod' in
[ONVIF Schema].

 CA Certificate ID

This parameter indicates the ID of CA certificate used for authentication server
verification. This is defined as 'CACertificateID' in [ONVIF Schema].

ONVIF™ – 86 – ONVIF Core Spec. – Ver. 2.1.1

 Respective configuration parameters for selected EAP method

Depending on selected EAP method, some specific parameters are needed as follows

 [EAP-MD5], [EAP-PEAP/MSCHAP-V2], [EAP-TTLS types] : Identity password so
that Authentication server can verify the user (the device) by using specified
password. [EAP-MD5] method is not applicable for the purpose of 802.11 (WPA-
Enterprise) usage.

 [EAP-TLS] : Client certificate ID so that the RADIUS server can verify the user (the
device) by using specified certificate.

This IEEE 802.1X parameters will be referred by security configuration as a part of a certain
network interface configuration. For the details, please refer to 8.2.11.

This specification assumes that IEEE 802.1X configuration on device will be done outside the
IEEE 802.1X managed network. In case of reconfiguring the IEEE 802.1X settings, it is also
assumed that it will be done outside the 802.1X managed network.

Note that in ONVIF 2.0 support for IEEE 802.1X is limited to IEEE 802.11 interfaces.

8.4.7.1 Create IEEE 802.1X configuration

This operation newly creates IEEE 802.1X configuration parameter set of the device. The
device shall support this command if support for IEEE 802.1X is signaled via the Security
Dot1X capability.. If the device receives this request with already existing configuration token
(Dot1XConfigurationToken) specification, the device should respond with 'ter:ReferenceToken
' error to indicate there is some configuration conflict.

Table 68: CreateDot1XConfiguration command

CreateDot1XConfiguration Access Class: WRITE_SYSTEM

Message name Description

CreateDot1XConfigurationRequest This message contains:
tt:Dot1XConfiguration Dot1XConfiguration[1][1]

CreateDot1XConfigurationResponse This is an empty message.

Fault codes Description

env:Receiver
ter:ActionNotSupported

 ter:EAPMethodNotSupported

The suggested EAP method is not supported.

env:Receiver
ter:Action

 ter:MaxDot1X

Maximum number of IEEE 802.1X configurations reached.

env:Sender
 ter:OperationProhibited
 ter:CertificateID

Invalid Certificate ID error.

env:Sender
 ter:InvalidArgVal
 ter:ReferenceToken

Dot1XConfigurationToken already exists.

ONVIF™ – 87 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:InvalidArgVal
 ter:InvalidDot1X

Invalid IEEE 802.1X configuration.

8.4.7.2 Set IEEE 802.1X configuration

While the CreateDot1XConfiguration command is trying to create a new configuration
parameter set, this operation modifies existing IEEE 802.1X configuration parameter set of
the device. The device shall support this command if support for IEEE 802.1X is signaled via
the Security Dot1X capability.

Table 69: SetDot1XConfigurationRequest command

SetDot1XConfiguration Access Class: WRITE_SYSTEM

Message name Description

SetDot1XConfigurationRequest This message contains:
tt:Dot1XConfiguration Dot1XConfiguration[1][1]

SetDot1XConfigurationResponse This is an empty message.

Fault codes Description

env:Receiver
ter:ActionNotSupported

 ter:EAPMethodNotSupported

The suggested EAP method is not supported.

env:Sender
 ter:OperationProhibited
 ter:CertificateID

Invalid Certificate ID error.

env:Sender
ter:OperationProhibited
ter:ReferenceToken

Invalid Dot1XConfigurationToken error

env:Sender
 ter:InvalidArgVal
 ter:InvalidDot1X

Invalid IEEE 802.1X configuration.

8.4.7.3 Get IEEE 802.1X configuration

This operation gets one IEEE 802.1X configuration parameter set from the device by
specifying the configuration token (Dot1XConfigurationToken).

The device shall support this command if support for IEEE 802.1X is signaled via the Security
Dot1X capability.

Regardless of whether the 802.1X method in the retrieved configuration has a password or
not, the device shall not include the Password element in the response.

ONVIF™ – 88 – ONVIF Core Spec. – Ver. 2.1.1

Table 70: GetDot1XConfiguration command

GetDot1XConfiguration Access Class: READ_SYSTEM

Message name Description

GetDot1XConfigurationRequest This is message contains:
tt:ReferenceToken Dot1XConfigurationToken[1][1]

GetDot1XConfigurationResponse This message contains:
tt:Dot1XConfiguration Dot1XConfiguration[1][1]

Fault codes Description

env:Sender
ter:OperationProhibited
ter:ReferenceToken

Invalid Dot1XConfigurationToken error

8.4.7.4 Get IEEE 802.1X configurations

This operation gets all the existing IEEE 802.1X configuration parameter sets from the device.
The device shall respond with all the IEEE 802.1X configurations so that the client can get to
know how many IEEE 802.1X configurations are existing and how they are configured.

The device shall support this command if support for IEEE 802.1X is signaled via the Security
Dot1X capability.

Regardless of whether the 802.1X method in the retrieved configuration has a password or
not, the device shall not include the Password element in the response.

Table 71: GetDot1XConfigurations command

GetDot1XConfigurations Access Class: READ_SYSTEM

Message name Description

GetDot1XConfigurationsRequest This is an empty message.

GetDot1XConfigurationsResponse This message contains:
tt: Dot1XConfiguration Dot1XConfiguration[0][unbounded]

Fault codes Description

 No command specific faults!

8.4.7.5 Delete IEEE 802.1X configuration

This operation deletes an IEEE 802.1X configuration parameter set from the device. Which
configuration should be deleted is specified by the 'Dot1XConfigurationToken' in the request.
The device shall support this command if support for IEEE 802.1X is signaled via the Security
Dot1X capability.

ONVIF™ – 89 – ONVIF Core Spec. – Ver. 2.1.1

Table 72: DeleteDot1XConfigurations command

DeleteDot1XConfigurations Access Class: WRITE_SYSTEM

Message name Description

DeleteDot1XConfigurationRequest This message contains:
tt:ReferenceToken Dot1XConfigurationToken[1][1]

DeleteDot1XConfigurationResponse This is an empty message.

Fault codes Description

env:Sender
ter:OperationProhibited
ter:ReferenceToken

Invalid Dot1XConfigurationToken error

env:Receiver
ter:OperationProhibited
ter:ReferenceToken

Cannot delete specified IEEE 802.1X configuration.

8.4.8 Create self-signed certificate

This operation generates a private/public key pair and also can create a self-signed device
certificate as a result of key pair generation. The certificate is created using a suitable
onboard key pair generation mechanism.

If a device supports onboard key pair generation, the device that supports TLS shall support
this certificate creation command. And also, if a device supports onboard key pair generation,
the device that signals support for IEEE 802.1X via the Security Dot1X capability shall support
this command for the purpose of key pair generation. Certificates and key pairs are identified
using certificate IDs. These IDs are either chosen by the certificate generation requester or by
the device (in case that no ID value is given).

Table 73: CreateCertificate command

CreateCertificate Access Class: WRITE_SYSTEM

Message name Description

CreateCertificateRequest This message contains (if applicable) requested Certificate ID and
additional other requested parameters: subject, valid not before and
valid not after.
xs:token CertificateID [0][1]
xs:string Subject [0][1]
xs:dateTime ValidNotBefore [0][1]
xs:dateTime ValidNotAfter [0][1]

CreateCertificateResponse

This message contains the generated self-signed certificate.

tt:Certificate NvtCertificate [1][1]

Fault codes Description

env:Receiver
 ter:Action
 ter:KeyGeneration

The private/public key generation failed.

ONVIF™ – 90 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

CertificateID already exists.

env:Sender
 ter:InvalidArgVal
 ter:InvalidDateTime

Specified ValidNotBefore or ValidNotAfter parameter is not valid.

8.4.9 Get certificates

This operation gets all device server certificates (including self-signed) for the purpose of TLS
authentication and all device client certificates for the purpose of IEEE 802.1X authentication.
This command lists only the TLS server certificates and IEEE 802.1X client certificates for the
device (neither trusted CA certificates nor trusted root certificates). The certificates are
returned as binary data. A device that supports TLS shall support this command and the
certificates shall be encoded using ASN.1 [X.681], [X.682], [X.683] DER [X.690] encoding
rules.

Table 74: GetCertificates command

GetCertificates Access Class: READ_SYSTEM

Message name Description

GetCertificatesRequest This is an empty message.

GetCertificatesResponse

This message contains a list of the device certificates.

tt:Certificate NvtCertificate [0][unbounded]

Fault codes Description

 No command specific faults!

8.4.10 Get CA certificates

CA certificates will be loaded into a device and be used for the sake of following two cases.
The one is for the purpose of TLS client authentication in TLS server function. The other one
is for the purpose of Authentication Server authentication in IEEE 802.1X function. This
operation gets all CA certificates loaded into a device. A device that supports either TLS client
authentication or IEEE 802.1X shall support this command and the returned certificates shall
be encoded using ASN.1 [X.681], [X.682], [X.683] DER [X.690] encoding rules.

Table 75: GetCACertificates command

GetCACertificates Access Class: READ_SYSTEM

Message name Description

GetCACertificatesRequest This is an empty message.

GetCACertificatesResponse

This message contains a list of the CA certificates.

tt:Certificate CACertificate [0][unbounded]

Fault codes Description

ONVIF™ – 91 – ONVIF Core Spec. – Ver. 2.1.1

 No command specific faults!

8.4.11 Get certificate status

This operation is specific to TLS functionality. This operation gets the status
(enabled/disabled) of the device TLS server certificates. A device that supports TLS shall
support this command.

Table 76: GetCertificatesStatus command

GetCertificatesStatus Access Class: READ_SYSTEM

Message name Description

GetCertificatesStatusRequest This is an empty message.

GetCertificatesStatus-
Response

This message contains a list of the device server certificates
referenced by ID and their status. The status is defined as a Boolean
value (true = enabled, false = disabled).

tt:CertificateStatus CertificateStatus [0][unbounded]

Fault codes Description

 No command specific faults!

8.4.12 Set certificate status

This operation is specific to TLS functionality. This operation sets the status (enable/disable)
of the device TLS server certificates. A device that supports TLS shall support this command.
Typically only one device server certificate is allowed to be enabled at a time.

Table 77: SetCertificatesStatus command

SetCertificatesStatus Access Class: WRITE_SYSTEM

Message name Description

SetCertificatesStatusRequest This message contains a list of device server certificates referenced by
ID and the requested certificate status, i.e., enabled or disabled.

tt:CertificateStatus CertificateStatus [0][unbounded]

SetCertificatesStatus-
Response

This is an empty message

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

Unknown certificate reference.

8.4.13 Get certificate request

This operation requests a PKCS #10 certificate signature request from the device. The
returned information field shall be either formatted exactly as specified in [PKCS#10] or PEM

ONVIF™ – 92 – ONVIF Core Spec. – Ver. 2.1.1

encoded [PKCS#10] format. In order for this command to work, the device must already have
a private/public key pair. This key pair should be referred by CertificateID as specified in the
input parameter description. This CertificateID refers to the key pair generated using
CreateCertificate command defined in Section 8.4.8.

A device that support onboard key pair generation that supports either TLS or IEEE 802.1X
using client certificate shall support this command.

Table 78: GetPkcs10Request command

GetPkcs10Request Access Class: READ_SYSTEM

Message name Description

GetPkcs10RequestRequest This message contains a reference to the certificate (key pair) and
optional certificate parameters for the certificate request. These
attributes needs to be encoded as DER ASN.1 objects.

xs:token CertificateID [1][1]
xs:string Subject [0][1]
xs:BinaryData Attributes [0][1]

GetPkcs10RequestResponse

This message contains the PKCS#10 request data structure.

tt:BinaryData Pkcs10Request [1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

Invalid CertificateID

env:Receiver
 ter:Action
 ter:Signature

PKCS#10 signature creation failed.

8.4.14 Get client certificate status

This operation is specific to TLS functionality. This operation gets the status
(enabled/disabled) of the device TLS client authentication. A device that supports TLS shall
support this command.

Table 79: GetClientCertificateMode command

GetClientCertificateMode Access Class: READ_SYSTEM

Message name Description

GetClientCertificateMode-
Request

This is an empty message.

GetClientCertificateMode-
Response

This message contains the device client authentication status, i.e.,
enabled or disabled.

xs:boolean Enabled [1][1]

Fault codes Description

 No command specific faults!

ONVIF™ – 93 – ONVIF Core Spec. – Ver. 2.1.1

8.4.15 Set client certificate status

This operation is specific to TLS functionality. This operation sets the status
(enabled/disabled) of the device TLS client authentication. A device that supports TLS shall
support this command.

Table 80: SetClientCertificateMode command

SetClientCertificateMode Access Class: WRITE_SYSTEM

Message name Description

SetClientCertificateMode-
Request

This message contains the requested device client authentication
status, i.e., enabled or disabled.

xs:boolean Enabled [1][1]

SetClientCertificateMode-
Response

This is an empty message

Fault codes Description

env:Receiver
 ter:InvalidArgVal
 ter:ClientAuth

Trying to enable client authentication, but client authentication is not
supported or not configured.

8.4.16 Load device certificate

TLS server certificate(s) or IEEE 802.1X client certificate(s) created using the PKCS#10
certificate request command can be loaded into the device using this command (see Section
8.4.13). The certificate ID in the request shall be present. The device may sort the received
certificate(s) based on the public key and subject information in the certificate(s).

The certificate ID in the request will be the ID value the client wish to have. The device is
supposed to scan the generated key pairs present in the device to identify which is the
correspondent key pair with the loaded certificate and then make the link between the
certificate and the key pair.

A device that supports onboard key pair generation that support either TLS or IEEE 802.1X
shall support this command.

The certificates shall be encoded using ASN.1 [X.681], [X.682], [X.683] DER [X.690] encoding
rules.

This command is applicable to any device type, although the parameter name is called for
historical reasons NVTCertificate.

Table 81: LoadCertificates command

LoadCertificates Access Class: WRITE_SYSTEM

Message name Description

LoadCertificatesRequest This message contains a list of the device certificates to upload.

tt:Certificate NVTCertificate [1][unbounded]

LoadCertificatesResponse

This is an empty message.

ONVIF™ – 94 – ONVIF Core Spec. – Ver. 2.1.1

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateFormat

Bad certificate format or the format is not supported by the device.

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

Certificate ID already exists.

env:Sender
 ter:InvalidArgVal
 ter:InvalidCertificate

Invalid Certificate.

8.4.17 Load device certificates in conjunction with its private key

There might be some cases that a Certificate Authority or some other equivalent creates a
certificate without having PKCS#10 certificate signing request. In such cases, the certificate
will be bundled in conjunction with its private key. This command will be used for such use
case scenarios. The certificate ID in the request is optionally set to the ID value the client
wish to have. If the certificate ID is not specified in the request, device can choose the ID
accordingly.

This operation imports a private/public key pair into the device.

The certificates shall be encoded using ASN.1 [X.681], [X.682], [X.683] DER [X.690] encoding
rules.

A device that does not support onboard key pair generation and support either TLS or IEEE
802.1X using client certificate should support this command. A device that support onboard
key pair generation may support this command. The security policy of a device that supports
this operation should make sure that the private key is sufficiently protected.

Table 82: LoadCertificateWithPrivateKey command

LoadCertificateWithPrivateKey Access Class: WRITE_SYSTEM

Message name Description

LoadCertificateWithPrivateKeyRequest This message contains a private/public key pair to import.

tt:CertificateWithPrivateKey
CertificateWithPrivateKey[1][unbounded]

LoadCertificateWithPrivateKeyRespons
e

This is an empty message.

Fault codes Description

env: Sender
 ter:InvalidArgVal
 ter:CertificateFormat

Bad certificate format or the format is not supported by the
device.

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

CertificateID already exists.

env: Sender
 ter:InvalidArgVal

The public and private key are not matching.

ONVIF™ – 95 – ONVIF Core Spec. – Ver. 2.1.1

 ter: KeysNotMatching

8.4.18 Get certificate information request

This operation requests the information of a certificate specified by certificate ID. The device
should respond with its “Issuer DN”, “Subject DN”, “Key usage”, "Extended key usage”, “Key
Length”, “Version”, “Serial Number”, “Signature Algorithm” and “Validity” data as the
information of the certificate, as long as the device can retrieve such information from the
specified certificate. The IssuerDN and SubjectDN shall be encoded using the rules in [RFC
4514].

A device that supports either TLS or IEEE 802.1X should support this command.

Table 83: GetCertificateInformation command

GetCertificateInformation Access Class: READ_SYSTEM

Message name Description

GetCertificateInformationRequest This message contains:
CertificateID: The token of the certificate.
xs: token CertificateID [1][1]

GetCertificateInformationResponse This message contains:
tt:CertificateInformation CertificateInformation[1][1]

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

Invalid Certificate ID

8.4.19 Load CA certificates

This command is used when it is necessary to load trusted CA certificates or trusted root
certificates for the purpose of verification for its counterpart i.e. client certificate verification in
TLS function or server certificate verification in IEEE 802.1X function.

A device that support either TLS or IEEE 802.1X shall support this command. The device
shall support the DER format; other formats may be supported by the device.The device may
sort the received certificate(s) based on the public key and subject information in the
certificate(s). Either all CA certificates are loaded successfully or a fault message shall be
returned without loading any CA certificate.

Table 84: LoadCACertificates command

LoadCACertificates Access Class: WRITE_SYSTEM

Message name Description

LoadCACertificatesRequest This message contains a list of the device CA certificates to
upload.

tt:Certificate CACertificate [1][unbounded]

LoadCACertificatesResponse

This is an empty message.

Fault codes Description

ONVIF™ – 96 – ONVIF Core Spec. – Ver. 2.1.1

env:Sender
 ter:InvalidArgVal
 ter:CertificateFormat

Bad certificate format or the format is not supported by the
device.

env:Sender
 ter:InvalidArgVal
 ter:CACertificateID

CA Certificate ID already exists.

env:Receiver
 ter:OperationProhibited
 ter:MaxCertificates

Maximum number of Certificates already loaded.

8.4.20 Delete certificate

This operation deletes a certificate or multiple certificates. The device may also delete a
private/public key pair which is coupled with the certificate to be deleted. The device that
support either TLS or IEEE 802.1X shall support the deletion of a certificate or multiple
certificates through this command. Either all certificates are deleted successfully or a fault
message shall be returned without deleting any certificate.

Table 85: DeleteCertificates command

DeleteCertificates Access Class: WRITE_SYSTEM

Message name Description

DeleteCertificatesRequest This message deletes certificates identified with the CertificateID
parameter.

 xs:token CertificateID[1][unbounded]

DeleteCertificatesResponse This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:CertificateID

Unknown certificate reference.

env:Receiver
ter:OperationProhibited
ter:CertificateID

Cannot delete specified Certificates.

8.4.21 Get remote user

This operation returns the configured remote user (if any). A device that signals support for
remote user handling via the Security Capability RemoteUserHandling shall support this
operation. The user is only valid for the WS-UserToken profile or as a HTTP / RTSP user.

The algorithm to use for deriving the password is described in section 5.12.2.1section in
previous chapter 5].

ONVIF™ – 97 – ONVIF Core Spec. – Ver. 2.1.1

Table 86: GetRemoteUser command

GetRemoteUser Access Class: READ_SYSTEM

Message name Description

GetRemoteUserRequest This is an empty message.

GetRemoteUserResponse This message contains the configured remote user (if any). The value
returned are:

 xs:string Username [1][1]
 xs:boolean UseDerivedPassword [1][1]

NOTE; A device shall never return the Password field in RemoteUser.

 tt:RemoteUser: RemoteUser [0][1]

Fault codes Description

env:Receiver
 ter:ActionNotSupported
 ter:NotRemoteUser

Remote User handling is not supported

8.4.22 Set remote user

This operation sets the remote user. A device that signals support for remote user handling via the
Security Capability RemoteUserHandling shall support this operation. The user is only valid for the
WS-UserToken profile or as a HTTP / RTSP user.

The password that is set shall always be the original (not derived) password.

If UseDerivedPassword is set password derivation shall be done by the device when connecting to a
remote device.The algorithm to use for deriving the password is described in section 5.12.2.1.

To remove the remote user SetRemoteUser should be called without the RemoteUser parameter.

Table 87: SetRemoteUser command

SetRemoteUser Access Class: WRITE_SYSTEM

Message name Description

SetRemoteUserRequest This message contains the remote user. The value that can set are:
 xs:string Username [1][1]
 xs:string Password [0][1]
 xs:boolean UseDerivedPassword [1][1]

 tt:RemoteUser: RemoteUser [0][1]

SetRemoteUserResponse This is an empty message

Fault codes Description

env:Receiver
 ter:ActionNotSupported
 ter:NotRemoteUser

Remote User handling not supported

ONVIF™ – 98 – ONVIF Core Spec. – Ver. 2.1.1

8.4.23 Get endpoint reference

A client can ask for the device service endpoint reference address property that can be used
to derive the password equivalent for remote user operation. The device should support the
GetEndpointReference command returning the address property of the device service
endpoint reference.

Table 88: GetEndpointReference command

GetEndpointReference Access Class: PRE_AUTH

Message name Description

GetEndpointReferenceReque
st

This is an empty message.

GetEndpointReferenceRespo
nse

The requested URL.

 xs:string GUID [1][1]

Fault codes Description

 No command specific faults!

8.5 Input/Output (I/O)

The commands in ths section are kept for backward compatibility purposes. For a more
extensive IO interface please refer to the ONVIF Device IO Specification.

The Input/Output (I/O) commands are used to control the state or observe the status of the
I/O ports. If the device has I/O ports, then it shall support the I/O commands.

8.5.1 Get relay outputs

This operation gets a list of all available relay outputs and their settings.

Table 89: GetRelayOutputs command

GetRelayOutputs Access Class: READ_MEDIA

Message name Description

GetRelayOutputsRequest This is an empty message.

GetRelayOutputsResponse This message contains an array of relay outputs.

tt:RelayOutput RelayOutputs [0][unbounded]

Fault codes Description

 No command specific faults!

8.5.2 Set relay output settings

This operation sets the settings of a relay output.

The relay can work in two relay modes:

ONVIF™ – 99 – ONVIF Core Spec. – Ver. 2.1.1

 Bistable – After setting the state, the relay remains in this state.

 Monostable – After setting the state, the relay returns to its idle state after the
specified time.

The physical idle state of a relay output can be configured by setting the IdleState to ‘open’ or
‘closed’ (inversion of the relay behaviour).

Idle State ‘open’ means that the relay is open when the relay state is set to ‘inactive’ through
the trigger command (see Section 8.5.3) and closed when the state is set to ‘active’ through
the same command.

Idle State ‘closed’ means that the relay is closed when the relay state is set to ‘inactive’
through the trigger command (see Section 8.5.3) and open when the state is set to ‘active’
through the same command.

The Duration parameter of the Properties field “DelayTime” describes the time after which the
relay returns to its idle state if it is in monostable mode. If the relay is set to bistable mode the
value of the parameter shall be ignored.

Table 90: SetRelayOutputSettings command.

SetRelayOutputSettings Access Class: ACTUATE

Message name Description

SetRelayOutputSettingsRequ
est

This message contains:
 “RelayToken”: Token reference to the requested relay output.
 “RelayOutputSettings”: The settings of the relay
.

tt:ReferenceToken RelayOutputToken [1][1]
tt:RelayOutputSettings RelayOutputSettings [1][1]

SetRelayOutputSettingsResp
onse

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:RelayToken

Unknown relay token reference.

env:Sender
 ter:InvalidArgVal
 ter:ModeError

Monostable delay time not valid

8.5.3 Trigger relay output

This operation triggers a relay output1.

Table 91: SetRelayOutputState command

SetRelayOutputState Access Class: ACTUATE

Message name Description

SetRelayOutputStateRequest This message contains:
 RelayToken”: Token reference to the requested relay output.

1 There is no GetRelayState command; the current logical state of the relay output is transmitted via notification

and their properties.

ONVIF™ – 100 – ONVIF Core Spec. – Ver. 2.1.1

 “LogicalState”: Trigger request, i.e., active or inactive.

tt:ReferenceToken RelayOutputToken [1][1]
tt:RelayLogicalState LogicalState [1][1]

SetRelayOutputStateRespons
e

This is an empty message.

Fault codes Description

env:Sender
 ter:InvalidArgVal
 ter:RelayToken

Unknown relay token reference.

8.5.4 Auxiliary operation

This section describes operations to manage auxiliary commands supported by a device, such
as controlling an Infrared (IR) lamp, a heater or a wiper or a thermometer that is connected to
the device.

The supported commands can be retrieved by the AuxiliaryData parameter which derives from
GetCapabilities command response. The command transmitted by using this command should
match one of the supported commands listed in the AuxiliaryData response. If the capability
command response lists only irlampon command, then the SendAuxiliaryCommand argument
will be irlampon, which may indicate turning the connected IR lamp on.

A device that indicates auxiliary service capability shall support this command.

Table 92: Send auxiliary command

SendAuxiliaryCommand Access Class: ACTUATE

Message name Description

SendAuxiliaryCommandRequest This message contains the auxiliary command.

tt:AuxiliaryData AuxiliaryCommand[1][1]

SendAuxiliaryCommandResponse The response contains the auxiliary response.

tt:AuxiliaryData AuxiliaryCommandResponse[0][1]

Fault codes Description

env:Sender
ter:InvalidArgVal
ter:AuxiliaryDataNotSupported

The requested AuxiliaryCommand is not supported.

8.6 Service specific fault codes

Table 93 lists the device service-specific fault codes. In addition, each command can also
generate a generic fault, see Table 5.

The specific faults are defined as sub code of a generic fault, see Section 5.11.2.1. The
parent generic subcode is the subcode at the top of each row below and the specific fault
subcode is at the bottom of the cell.

Table 93: Device service specific fault codes

Fault Code Parent Subcode Fault Reason Description

ONVIF™ – 101 – ONVIF Core Spec. – Ver. 2.1.1

Subcode

ter:Action env:Receiv
er

ter:EmptyPolicy

The policy is empty The device policy file does
not exist or it is empty.

ter:Action env:Receiv
er

ter:EmptyScope

The scope list is empty Scope list is empty.

ter:Action env:Receiv
er

ter:FirmwareUpgradeFailed

Upgrade failed The firmware upgrade failed.

ter:Action env:Receiv
er
 ter:KeyGeneration

Generating a key failed The private/public key
generation failed.

ter:Action env:Receiv
er

ter:Signature

Creating a signature
failed

PKCS#10 signature creation
failed.

ter:InvalidArgVal

env:Receiv
er

ter:ClientAuth

Client authentication
not supported

Trying to enable client
authentication, but client
authentication is not
supported or not configured

ter:Action env:Receiv
er
 ter:TooManyUsers

Too many users Maximum number of
supported users exceeded.

ter:Action env:Receiv
er

ter:TooManyScopes

Too large scope list The scope list exceeds the
supported number of scopes.

ter:ActionNotSupported env:Receiv
er

ter:NoSuchService

The service is not
supported

The requested WSDL service
category is not supported by
the device.

ter: InvalidArgs env:Sender

ter:AccesslogUnavailable

No access log
available

There is no access log
information available.

ter:InvalidArgVal env:Sender

ter:CertificateFormat

Invalid format Bad certificate format or the
format is not supported by the
device.

ter:InvalidArgVal env:Sender

ter:CertificateID

Invalid certificate ID Unknown certificate reference
or the certificate ID already
exists.

ter:InvalidArgVal

env:Sender

ter:CACertificateID

Invalid CA certificate ID Unknown CA certificate
reference or the CA certificate
ID already exists.

env:Sender ter:InvalidArgVal Invalid file The backup file(s) are invalid.

ONVIF™ – 102 – ONVIF Core Spec. – Ver. 2.1.1

ter:InvalidBackupFile

ter:InvalidArgVal env:Sender

ter:InvalidDateTime

Invalid date and time. An invalid date or time was
specified.

ter:InvalidArgVal env:Sender

ter:NtpServerUndefined

NTP server undefined. Cannot switch DateTimeType
to NTP because no NTP
server is defined.

ter:InvalidArgVal env:Sender

ter:InvalidDnsName

Invalid name The suggested NTP server
name is invalid.

ter:InvalidArgVal env:Sender

ter:TimeSyncedToNtp

Time synced to NTP Current DateTimeType
requires an NTP server.

ter: InvalidArgs env:Sender

ter:InvalidFirmware

Invalid firmware The firmware was invalid i.e.
not supported by this device.

ter:InvalidArgVal env:Sender

ter:InvalidGatewayAddress

Invalid address The supplied gateway
address was invalid.

ter:InvalidArgVal env:Sender

ter:InvalidHostname

Invalid name The requested hostname
cannot be accepted by the
device.

ter:InvalidArgVal env:Sender

ter:InvalidInterfaceSpeed

Invalid speed The suggested speed is not
supported.

ter:InvalidArgVal env:Sender

ter:InvalidInterfaceType

Invalid type The suggested network
interface type is not
supported.

ter:InvalidArgVal env:Sender

ter:InvalidIPv4Address

Invalid address The suggested IPv4 address
is invalid.

ter:InvalidArgVal env:Sender

ter:NoIPv4Address

Address does not exist The IPv4 address to be
removed does not exist.

ter:InvalidArgVal env:Sender

ter:InvalidIPv6Address

Invalid address The suggested IPv6 address
is invalid.

ter:InvalidArgVal env:Sender

ter:NoIPv6Address

Address does not exist The IPv6 address to be
removed does not exist.

ONVIF™ – 103 – ONVIF Core Spec. – Ver. 2.1.1

ter:InvalidArgVal env:Sender

ter:InvalidMtuValue

Invalid data The MTU value is invalid.

ter:InvalidArgVal env:Sender

ter:InvalidNetworkInterface

Invalid token The supplied network
interface token does not
exists

ter:InvalidArgVal env:Sender

ter:InvalidTimeZone

Invalid data An invalid time zone was
specified.

ter:InvalidArgVal env:Sender

ter:IPFilterListIsFull

The list is full It is not possible to add more
IP filters since the IP filter list
is full.

ter:InvalidArgVal env:Sender

ter:ModeError

Invalid data Monostable delay time not
valid.

ter:InvalidArgs env:Sender

ter:PolicyFormat

Invalid format The requested policy cannot
be set due to unknown policy
format.

ter:InvalidArgVal env:Sender

ter:RelayToken

Unknown relay token. The token reference is
unknown.

ter:InvalidArgVal env:Sender

ter:ServiceNotSupported

The service is not
supported

The supplied network service
is not supported.

ter:InvalidArgVal env:Sender

ter:SupportInformationUnavailab
le

No support information
available

There is no support
information available.

ter: InvalidArgs env:Sender

ter:SystemlogUnavailable

No system log
available

There is no system log
information available.

ter:InvalidArgVal env:Sender

ter:UsernameMissing

Username not
recognized

Username not recognized.

ter:OperationProhibited env:Sender

ter:FixedScope

Trying to delete fixed
scope parameter

Trying to delete fixed scope
parameter, command
rejected.

ter:InvalidArgVal env:Sender

ter:NoScope

Scope does not exist Trying to Remove scope
which does not exist.

env:Sender ter:OperationProhibited Too weak password Too weak password.

ONVIF™ – 104 – ONVIF Core Spec. – Ver. 2.1.1

ter:Password

ter:OperationProhibited env:Sender

ter:PasswordTooLong

Too long password The password is too long.

ter:OperationProhibited env:Sender

ter:UsernameTooShort

Too long password The password is too short.

ter:OperationProhibited env:Sender

ter:ScopeOverwrite

Trying overwriting
permanent device
scope setting

Scope parameter overwrites
permanent device scope
setting, command rejected.

ter:OperationProhibited env:Sender

ter:UsernameClash

Username already
exists

Username already exists.

ter:OperationProhibited env:Sender

ter:UsernameTooLong

Too long username The username is too long.

ter:ActionNotSupported env:Receiv
er

ter:InvalidDot11

Not supported IEEE 802.11Configuration is
not supported.

ter:InvalidArgVal env:Sender

ter:InvalidSecurityMode

Not Supported The selected security mode is
not supported.

ter:InvalidArgVal env:Sender

ter:InvalidStationMode

Not Supported The selected station mode is
not supported.

ter:InvalidArgVal env:Sender

ter:MissingDot11

IEEE 802.11 value
missing

IEEE 802.11 value is missing
in the security configuration.

ter:InvalidArgVal env:Sender

ter:MissingPSK

PSK value missing PSK value is missing in
security configuration.

ter:InvalidArgVal env:Sender

ter:MissingDot1X

IEEE 802.1X value is
missing

IEEE 802.1X value in security
configuration is missing or
none existing.

ter:InvalidArgVal env:Sender

ter:IncompatibleDot1X

IEEE 802.!X value is
incompatible

IEEE 802.1X value in security
configuration is incompatible
with the network interface.

ter:InvalidArgVal env:Sender

ter:NotDot11

Not IEEE 802.11 The interface is not an IEEE
802.11 interface.

env:Sender ter:InvalidArgVal

Invalid IEEE 802.1X
configuration

Specified IEEE 802.1X
configuration is not valid.

ONVIF™ – 105 – ONVIF Core Spec. – Ver. 2.1.1

ter:InvalidDot1X

ter:Action env:Receiv

er
ter:NotConnectedDot11

IEEE 802.11 not
connected

IEEE 802.11 network is not
connected.

ter:ActionNotSupported env:Receiv
er

ter:NotScanAvailable

ScanAvailableIEEE802
.11Networks is not
supported.

ScanAvailableIEEE802.11Net
works is not supported.

ter:ActionNotSupported env:Receiv
er

ter:NotRemoteUser

Remote User handling
is not supported.

Remote User handling is not
supported.

ter:ActionNotSupported

env:Receiv
er
 ter:EAPMethodNotSupported

The suggested EAP
method is not
supported.

The suggested EAP method
is not supported.

ter:Action env:Receiv
er

ter:MaxDot1X

Maximum number of
IEEE 802.1X
configurations reached.

Device reached maximum
number of IEEE 802.1X
configurations.

ter:OperationProhibited

env:Receiv
er

ter:ReferenceToken

Cannot delete specified
IEEE 802.1X
configuration.

It is not possible to delete
specified IEEE 802.1X
configuration.

ter:OperationProhibited

env:Receiv
er

ter:CertificateID

Cannot delete specified
Certificate(s).

It is not possible to delete
specified Certificate(s).

ter:OperationProhibited

env:Sender

ter:ReferenceToken

Invalid
Dot1XConfigurationTok
en error.

Specified IEEE 802.1X
configuration token is invalid.

ter:OperationProhibited

env:Sender

ter:CertificateID

Invalid Certificate ID
error.

Specified Certificate ID is
invalid.

ter:InvalidArgVal

env:Sender

ter:ReferenceToken

Dot1XConfigurationTok
en already exists.

Specified
Dot1XConfigurationToken
already exists in the device.

ter:InvalidArgVal

env:Sender

ter:InvalidCertificate

Invalid certificate. Specified certificate is invalid.

ter:OperationProhibited

env:Receiv
er

ter:MaxCertificates

Maximum number of
Certificates already
loaded.

Device reached maximum
number of loaded
Certificates.

ter:OperationProhibited env:Sender

ter:PasswordTooWeak

Too weak password Too weak password

ter:InvalidArgVal

env:Sender

ter:AuxiliaryDataNotSupported

The requested
AuxiliaryCommand is
not supported.

The requested
AuxiliaryCommand is not
supported.

ONVIF™ – 106 – ONVIF Core Spec. – Ver. 2.1.1

ter:InvalidArgVal

env:Sender

ter:InvalidTimeOutValue

Invalid Timeout value
specified.

Specified TimeOut value is
invalid.

ter:OperationProhibited

env:Sender

ter:DataLengthOver

Number of available
bytes exceeded.

Number of available bytes
exceeded.

ter:OperationProhibited

env:Sender

ter:DelimiterNotSupport

Sequence of character
(delimiter) is not
supported.

Sequence of character
(delimiter) is not supported.

ter:OperationProhibited

env:Receiv
er

ter:InvalidMode

Device is not ready to
operate in command
mode.

Device is not ready to operate
in command mode.

ter:InvalidArgVal env:Sender

ter:FixedUser

Removing fixed user Client trying to remove fixed
user.

ter:OperationProhibited env:Sender

ter:AnonymousNotAllowed

User level anonymous
is not allowed.

User level anonymous is not
allowed.

ter:InvalidArgVal

env:Sender

ter:KeysNotMatching

Keys not matching The public and private key is
not matching.

ter:InvalidArgVal

env:Sender

ter:PortAlreadyInUse

Port in use The selected port is already
in use.

ter:ActionNotSupported env:Receiv
er

ter:EnablingTlsFailed

Enabling TLS failed The device doesn't support
TLS or TLS is not configured
appropriately.

ONVIF™ – 107 – ONVIF Core Spec. – Ver. 2.1.1

9 Event handling

An event is an action or occurrence detected by a device that a client can subscribe to.
Events are handled through the event service. An ONVIF compliant device shall provide an
event services as defined in [ONVIF Event WSDL]. Both device and client shall support [WS-
Addressing] for event services.

Event Handling in this standard is based on the [WS-BaseNotification] and [WS-Topics]
specifications. This standard requires the implementation of the basic notification interface as
described in section 9.1, which conforms completely to the [WS-BaseNotification]
specification. In addition, the device shall implement the Real-time Pull-Point Notification
Interface and the Notification Streaming Interface as introduced in sections 9.2 and 9.3,
respectively.

This standard introduces notification message extensions that allow a client to track object
properties (such as video analytics object properties) through events. Properties are defined
in Section 9.4.

The description of event payload and their filtering within subscriptions is discussed in Section
9.5. Section 9.6 describes how Synchronization Point can be requested by clients using one
of the three Notification Interfaces. Section 9.7 describes the integration of Topics. Section
9.9 discusses the handling of faults.

The last section demonstrates in detail the usage of the Real-Time Pull-Point Notification
Interface including Message Filtering and Topic Set. Examples for the basic notification
interface can be found in the corresponding [WS-BaseNotification] specification.

9.1 Basic Notification Interface

Section 9.1.1 briefly introduces the Basic Notification Interface of the [WS-BaseNotification]
specification. Section 9.1.2 summarizes the mandatory and the optional interfaces of the [WS-
BaseNotification] specification.

9.1.1 Introduction

The following logical entities participate in the notification pattern:

Client: implements the NotificationConsumer interface.

Event Service: implements the NotificationProducer interface.

Subscription Manager: implements the BaseSubscriptionManager interface.

The Event Service and the Subscription Manager should be instantiated on a device.

Typical messages exchanged between the entities are shown in the sequence diagram in
Figure 9. First, the client establishes a connection to the Event Service. The client can then
subscribe for certain notifications by sending a SubscriptionRequest. If the Event Service
accepts the Subscription, it dynamically instantiates a SubscriptionManager representing the
Subscription. The Event Service shall return the WS-Endpoint-Address of the
SubscriptionManager in the SubscriptionResponse.

In order to transmit notifications matching the Subscription, another connection is established
from the Event Service to the client. Via this connection, the Event Service sends a one-way
Notify message to the NotificationConsumer interface of the client. Corresponding
notifications can be sent at any time by the Event Service to the client, while the Subscription
is active.

ONVIF™ – 108 – ONVIF Core Spec. – Ver. 2.1.1

To control the Subscription, the client directly addresses the SubscriptionManager returned in
the SubscriptionResponse. In the SubscriptionRequest the client can specify a termination
time. The SubscriptionManager is automatically destroyed when the termination time is
reached. RenewRequests can be initiated by the client in order to postpone the termination
time. The client can also explicitly terminate the SubscriptionManager by sending an
UnsubscribeRequest. After a successful Unsubscription, the SubscriptionManager no longer
exists.

The interaction between EventService and SubscriptionManager is not further specified by the
[WS-BaseNotification] and is up to the implementation of the device.

Client

Subscription
Manager

Notify

UnsubscribeRequest

UnsubscribeResponse

Notify

RenewRequest

RenewResponse

SubscriptionResponse

Instantiate
SubscriptionRequest

Event
Service

Figure 9: Sequence diagram for the Base Notification Interface

9.1.2 Requirements

This section details those interfaces of the [WS-BaseNotification] that a device shall provide.

An ONVIF compliant device shall support the NotificationProducer Interface of the [WS-
BaseNotification]. As a result, the NotificationProducer Resource Properties are optional (see
Section 9.5). The device shall support TopicExpression and MessageContent filters with at
least the dialects described in Sections 9.5.5 and 9.7.3. If the device does not accept the
InitialTerminationTime of a subscription, it shall provide a valid InitialTerminationTime within
the Fault Message. The device shall be able to provide notifications using the Notify wrapper
of the [WS-BaseNotification] specification. The SubscriptionPolicy wsnt:UseRaw is optional
for the device. Although the [WS-BaseNotification] has CurrentTime and TerminationTime as
optional elements in a SubscribeResponse and RenewResponse, an ONVIF compliant device
shall list them in both SubscribeResponses and RenewResponse. The device may respond to
any GetCurrentMessage request with a Fault message indicating that no current message is
available on the requested topic.

ONVIF™ – 109 – ONVIF Core Spec. – Ver. 2.1.1

The implementation of the Pull-Point Interface of the [WS-BaseNotification] on a device is
optional.

An ONVIF compliant device shall implement the Base Subscription Manager Interface of the
[WS-BaseNotification] specification consisting of the Renew and Unsubscribe operations. The
Pausable Subscription Manager Interface is optional. The implementation of Subscriptions as
WS-Resources is optional.

An ONVIF compliant device shall support time values in request parameters that are given in
utc with the 'Z' indicator and respond all time values as utc including the 'Z' indicator.

9.2 Real-time Pull-Point Notification Interface

This section introduces the Real-time Pull-Point Notification Interface. This interface provides
a firewall friendly notification interface that enables real-time polling and initiates all client
communications.

This interface is used in the following way:

1) The client asks the device for a PullPointSubscription with the
CreatePullPointSubscriptionRequest message. The request contains a detailed description
of the Subscription. The ConsumerReference shall be omitted, in contrast to the
subscription of the Basic Notification Interface (see Section 9.1).

2) The device evaluates the Subscription and returns either a
CreatePullPointSubscriptionResponse when the Subscription is accepted or one of the
Fault codes.

3) If the Subscription is accepted, the response contains a WS-EndpointReference to a
SubscriptionManager. This WS-Endpoint shall provide a PullMessages operation, which is
used by the client to retrieve Notifications and by the Base Subscription Manager Interface
described in the [WS-BaseNotification] specification. The Base Subscription Manager
Interface consists of PullMessages, Renew and Unsubscribe operations. The sequence
diagram of the interaction is shown in Figure 10. The PullMessagesRequest contains
Timeout and MessageLimit parameters.

ONVIF™ – 110 – ONVIF Core Spec. – Ver. 2.1.1

Client

Subscription
Manager

PullMessages
Request

PullMessages
Response

Unsubscribe
Request

Unsubscribe
Response

CreatePullPoint
SubscriptionResponse

Instantiate
CreatePullPoint

SubscriptionRequest

Event
Service

Figure 10: Sequence diagram for the Real-time Pull-Point Notification Interface.

4) The device shall immediately respond with notifications that have been aggregated on
behalf of the client. If there are no aggregated notifications, the device waits with it’s
response until either a notification is produced for the client or the specified Timeout is
exceeded. In any case, the response will contain, at most, the number of notifications
specified by the MessageLimit parameter. The client can poll the notifications in real-time
when it starts a new PullMessagesRequest immediately after each
PullMessagesResponse.

5) If neither a termination time nor a relative termination time is set in the
CreatePullPointSubscriptionRequest, each PullMessagesRequest shall be interpreted as
a keep-alive for the corresponding PullPointSubscription. The termination time is
recomputed according to the relative termination time if available or according to a device
internal default value. To inform the client about the updated termination time, the
PullMessagesReponse shall contain the CurrentTime and TerminationTime elements.
When the PullMessagesRequest is used as keep-alive for the corresponding
PullPointSubscription, the RenewRequest, defined by the [WS-BaseNotification], need
not be called by a client. Nevertheless, the device shall support it for the
PullPointSubscription.

ONVIF™ – 111 – ONVIF Core Spec. – Ver. 2.1.1

9.2.1 Create pull point subscription

The device shall provide the following CreatePullPointSubscription command. If no Filter
element is specified the pullpoint shall notify all occurring events to the client.

A device shall support an absolute time value specified in utc as well as a relative time value
for the InitialTerminationTime parameter. A device shall respond both parameters
CurrentTime and TerminationTime as utc using the 'Z' indicator.

Table 94: CreatePullPointSubscription command

CreatePullPointSubscription Access Class: READ_MEDIA

Message name Description

CreatePullPointSubscriptionR
equest

This message contains the same elements as the
SubscriptionRequest of the [WS-BaseNotification] without the
ConsumerReference:

wsnt:FilterType Filter [0][1]
wsnt:AbsoluteOrRelativeTimeType InitialTerminationTime [0][1]
xs:any SubscriptionPolicy [0][1]

CreatePullPointSubscriptionR
esponse

The response contains the same elements as the
SubscriptionResponse of the [WS-BaseNotification]:

wsa:EndpointReferenceType SubscriptionReference [1][1]
xs:dateTime CurrentTime [1][1]
xs:dateTime TerminationTime [1][1]

Fault codes Description

 The same faults as for Subscription Request of the [WS-
BaseNotification] are used.

9.2.2 Pull messages

The device shall provide the following PullMessages command for all SubscriptionManager
endpoints returned by the CreatePullPointSubscription command.

The command shall at least support a Timeout of one minute. In case a device supports
retrieval of less messages than requested it shall return these without generating a fault.

A device shall respond both parameters CurrentTime and TerminationTime as utc using the
'Z' indicator.

Table 95: PullMessages command

PullMessages Access Class: READ_MEDIA

Message name Description

PullMessagesRequest This message shall be addressed to a SubscriptionManager in order to
pull notifications:

xs:duration Timeout [1][1]
xs:int MessageLimit [1][1]

PullMessagesResponse The response contains a list of notifications together with an updated
TerminationTime for the SubscriptionManager:

ONVIF™ – 112 – ONVIF Core Spec. – Ver. 2.1.1

xs:dateTime CurrentTime [1][1]
xs:dateTime TerminationTime [1][1]
wsnt:NotificationMessageHolderType NotificationMessage
[0][unbounded]

PullMessagesFaultResponse The Timeout exceeds the upper limit supported by the device. The
Fault Message shall contain the upper limits for both parameters.

xs:duration MaxTimeout[1][1]
xs:int MaxMessageLimit[1][1]

Fault codes Description

 No specific fault codes.

9.3 Notification Streaming Interface

Section “Metadata Configuration“ of the ONVIF Media Service Specification describes the
creation, deletion and modification of metadata configurations. Certain metadata
configurations can contain multiple subscriptions whose structure is the same as that for a
notification subscription. When a metadata configuration containing subscriptions has been
assigned to a profile, a client uses that profile to get an RTP stream that includes the
configured notifications as metadata. The notification streaming via RTP shall be implemented
by an ONVIF compliant device that supports the ONVIF Media service.

The [WS-BaseNotification] defines the element wsnt:NotificationMessage to pack the
Message Payload, the Topic and the ProducerReference. The structure of this message is the
same as that for direct notification requests (the format is described in Section 9.5). Multiple
instances of the wsnt:NotificationMessage elements can be placed within a metadata
document introduced in the Real-time Viewing section.

There is no explicit SubscriptionReference with streaming notifications. Therefore, the
wsnt:NotificationMessage shall not contain the SubscriptionReference element.

9.4 Properties

A Property is a collection of name and value pairs representing a unique and addressable set
of data. They are uniquely identified by the combination of their Topic, Source and Key values
and are packaged like ordinary events. A Property also contains an additional flag, stating
whether it is newly created, has changed or has been deleted.

When a client subscribes to a topic representing a certain property, the device shall provide
notifications informing the client of all objects with the requested property, which are alive at
the time of the subscription. An client can also request the values of all currently alive
properties the client has subscribed to at any time by asking for a synchronization point (see
section 9.6).

The property interface is defined in this standard in order to group all property related events
together and to present uniformly to clients. It is recommended to use the property interface
wherever applicable. Section 9.5 explains the structure of events and properties in detail.

9.4.1 Property Example

The following video analytics example demonstrates the dynamic behaviour of properties: The
rule engine interface of the video analytics detector can define fields. Such a detector field is
described by a polygon in the image plane. For each object in the scene, the rule engine
determines which objects are within the polygon. A client can access this information by
subscribing to the corresponding ObjectsInside property of the detector field. Each time an
object appears in the scene, a new ObjectsInside property is created. The client is informed

ONVIF™ – 113 – ONVIF Core Spec. – Ver. 2.1.1

by a corresponding “property created” notification indicating if the object appeared inside or
outside the polygon. Each time an object enters or leaves the polygon, a “property changed”
notification is produced indicating that the ObjectsInside property for this object has changed.
When an object leaves the scene, the corresponding ObjectsInside property is deleted and
the client is informed via a “property deleted” notification.

9.5 Notification Structure

The following code is the schema for the wsnt:NotificationMessage [WS-
BaseNotification]:

<xs:complexType name="NotificationMessageHolderType" >
 <xs:sequence>
 <xs:element ref="wsnt:SubscriptionReference" minOccurs="0" />
 <xs:element ref="wsnt:Topic" minOccurs="0" />
 <xs:element ref="wsnt:ProducerReference" minOccurs="0" />
 <xs:element name="Message">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:element name="NotificationMessage"
 type="wsnt:NotificationMessageHolderType"/>

This corresponds to the following XML structure:

<wsnt:NotificationMessage>
 <wsnt:SubscriptionReference>
 wsa:EndpointReferenceType
 </wsnt:SubscriptionReference>
 <wsnt:Topic Dialect="xs:anyURI">
 …
 </wsnt:Topic>?
 <wsnt:ProducerReference>
 wsa:EndpointReferenceType
 </wsnt:ProducerReference>
 <wsnt:Message>
 …
 </wsnt:Message>
</wsnt:NotificationMessage>

where the wsnt:Message element contains the actual notification payload. The XML type of
the Message element can be specified within a TopicTree definition (see Section 9.7).

Section 9.5.1 gives an overview of the information a client retrieves through notifications.
Section 9.5.2 gives a detailed formatting of the Message payload, and Section 9.5.4
introduces a description language for the Message payload. Section 9.5.5 defines the
grammar used in a subscription to filter notifications by their Message content.

9.5.1 Notification information

A notification answers at least the following questions:

When did it happen?

Who produced the event?

What happened?

ONVIF™ – 114 – ONVIF Core Spec. – Ver. 2.1.1

The “when” question is answered by adding a time attribute to the Message element of the
NotificationMessage. An ONVIF compliant device shall include the time attribute to the
Message element.

The “who” question is split into two parts. One part is the WS-Endpoint which identifies the
device or a service within the device where the notification has been produced. Therefore, the
WS-Endpoint should be specified within the ProducerReference Element of the
NotificationMessage. The second part is the identification of the component within the WS-
Endpoint, which is responsible for the production of the notification. Depending on the
component multiple parameters or none may be needed to identify the component uniquely.
These parameters are placed as Items within the Source element of the Message container.

The “what” question is answered in two steps. First, the Topic element of the
NotificationMessage is used to categorize the Event. Second, items are added to the Data
element of the Message container in order to describe the details of the Event.

When the topic points to properties (see Section 9.4), the client uses the NotificationProducer,
the Topic, the Source Items and optional Key Items (see Section 9.5) in order to identify the
property. These values shall result in a unique identifier.

9.5.1.1 Event Example

The subsequent example demonstrates the different parts of the notification:

<wsnt:NotificationMessage>
 ...
 <wsnt:Topic Dialect="...Concrete">
 tns1:PTZController/PTZPreset/Reached
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="...">
 <tt:Source>
 <tt:SimpleItem Name="PTZConfigurationToken" Value="PTZConfig1"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItem Name="PresetToken" Value="Preset5"/>
 <tt:SimpleItem Name="PresetName" Value="ParkingLot"/>
 </tt:Data>
 </tt:Message>
 </wsnt:Message>
</wsnt:NotificationMessage>

The Item “PTZConfigurationToken” identifies uniquely the component, which is responsible for
the detection of the Event. In this example, the component is a PTZ Node referenced by the
PTZ Configuration “PTZConfig1”. The event tns1:PTZController/PTZPreset/Reached
indicates that the PTZ unit has arrived at a preset. The data block contains the information
which preset it is. Thereby, the Preset is identified by a PresetToken “Preset5” which is
named “PresetName”.

9.5.2 Message Format

The Message element of the NotificationMessage is defined in [ONVIF Schema]. The
definition is presented below2:

<xs:element name="Message" type="Message">

<xs:element name="Message">
 <xs:complexType>
 <xs:sequence>

2 Please note that the schema is included here for information only. [ONVIF Schema] contains the normative

schema definition.

ONVIF™ – 115 – ONVIF Core Spec. – Ver. 2.1.1

 <xs:element name="Source" type="tt:ItemList" minOccurs="0"/>
 <xs:element name="Key" type="tt:ItemList" minOccurs="0"/>
 <xs:element name="Data" type="tt:ItemList" minOccurs="0"/>
 ...
 </xs:sequence>

 <xs:attribute name="UtcTime" type="xs:time" use="required"/>
 <xs:attribute name="PropertyOperation" type="tt:PropertyOperationType"/>
 </xs:complexType>
</xs:element>

<xs:complexType name="ItemList">
 <xs:sequence>
 <xs:element name="SimpleItem" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Value" type="xs:anySimpleType" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ElementItem" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="PropertyOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Initialized"/>
 <xs:enumeration value="Deleted"/>
 <xs:enumeration value="Changed"/>
 </xs:restriction>
</xs:simpleType>

The Items within the Message element are grouped into three categories: Source, Key, and
Data. The Key group shall not be used by notifications which are not related to properties.
Multiple Simple and Element Items can be placed within each group. Each Item has a name
and a value. In the case of an ElementItem, the value is expressed by one XML element
within the ElementItem element. In the case of a SimpleItem, the value shall be specified by
the value attribute. The name of all Items shall be unique within all Items contained in any
group of this Message.

Vendor specific extensions shall express the SimpleItem and ElementItem Name attribute as
qname. This avoids potential name clashes between Vendor specific extensions and future
ONVIF extensions.

It is recommended to use SimpleItems instead of ElementItems whenever applicable, since
SimpleItems ease the integration of Messages into a generic client. The exact type
information of both Simple and ElementItems can be extracted from the TopicSet (see section
9.7), where each topic can be augmented by a description of the message payload.

The PropertyOperation shall be present when the notification relates to a property. The
operation mode “Initialized” shall be used to inform a client about the creation of a property.
The operation mode “Initialized” shall be used when a synchronization point has been
requested.

9.5.3 Property example, continued

The example in section 9.4.1 required an optional Key Item. The example in this section
demonstrates the application of Key Items. The rule engine can contain FieldDetector rules.

ONVIF™ – 116 – ONVIF Core Spec. – Ver. 2.1.1

These rules define an ObjectsInside property for each object in the scene. When a new object
appears outside of such a Field, the following notification is produced:

<wsnt:NotificationMessage>
 ...
 <wsnt:Topic Dialect="...Concrete">
 tns1:RuleEngine/FieldDetector/ObjectsInside
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="..." PropertyOperation="Initialized">
 <tt:Source>
 <tt:SimpleItem Name="VideoSourceConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="VideoAnalyticsConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="Rule" Value="myImportantField"/>
 </tt:Source>
 <tt:Key>
 <tt:SimpleItem Name="ObjectId" Value="5"/>
 </tt:Key>
 <tt:Data>
 <tt:SimpleItem Name="IsInside" Value="false"/>
 </tt:Data>
 </tt:Message>
 </wsnt:Message>
</wsnt:NotificationMessage>

The Source Items describe the Rule which produced the notification. When multiple objects
are in the scene, each of these objects has its own ObjectsInside property. Therefore, the
Object ID is used as an additional Key Item in order to make the property unique. The IsInside
Item is a Boolean value indicating whether the object is inside or outside of the Field.

When the object enters the Field, the rule produces a “property changed” message and
resembles the following:

<wsnt:NotificationMessage>
 ...
 <wsnt:Topic Dialect="...Concrete">
 tns1:RuleEngine/FieldDetector/ObjectsInside
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="..." PropertyOperation="Changed">
 <tt:Source>
 <tt:SimpleItem Name="VideoSourceConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="VideoAnalyticsConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="Rule" Value="myImportantField"/>
 </tt:Source>
 <tt:Key>
 <tt:SimpleItem Name="ObjectId" Value="5"/>
 </tt:Key>
 <tt:Data>
 <tt:SimpleItem Name="IsInside" Value="true"/>
 </tt:Data>
 </tt:Message>
 </wsnt:Message>
</wsnt:NotificationMessage>

Finally, when the object leaves the scene, a “property deleted” message is produced:

<wsnt:NotificationMessage>
 ...
 <wsnt:Topic Dialect="...Concrete">
 tns1:RuleEngine/FieldDetector/ObjectsInside
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="..." PropertyOperation="Deleted">
 <tt:Source>
 <tt:SimpleItem Name="VideoSourceConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="VideoAnalyticsConfigurationToken" Value="1"/>
 <tt:SimpleItem Name="Rule" Value="myImportantField"/>

ONVIF™ – 117 – ONVIF Core Spec. – Ver. 2.1.1

 </tt:Source>
 <tt:Key>
 <tt:SimpleItem Name="ObjectId" Value="5"/>
 </tt:Key>
 </tt:Message>
 </wsnt:Message>
</wsnt:NotificationMessage>

In this case, the Data item can be omitted because the object and its corresponding property
no longer exists.

9.5.4 Message Description Language

The structure of the Message payload was introduced in the previous section. The structure
contains three groups: Source, Key, and Data. Each group contains a set of Simple and
ElementItems. For each topic, a device can describe which Item will be part of a notification
produced by this topic using a message description language. The following description
language describes the mandatory message items3:

<xs:complexType name="MessageDescription">
 <xs:sequence>
 <xs:element name="Source" type="tt:ItemListDescription"
 minOccurs="0"/>
 <xs:element name="Key" type="tt:ItemListDescription" minOccurs="0"/>
 <xs:element name="Data" type="tt:ItemListDescription" minOccurs="0"/>
 ...
 </xs:sequence>
 <xs:attribute name="IsProperty" type="xs:boolean"/>
</xs:complexType>

<xs:complexType name="ItemListDescription">
 <xs:sequence>
 <xs:element name="SimpleItemDescription"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ElementItemDescription"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

The Name attribute of an Item shall be unique within all Items independent from the group
(Source, Key, Data) they are coming from. The IsProperty attribute shall be set to true when
the described Message relates to a property. If the Message, however, does not relate to a
property, the Key group shall not be present. The Type attribute of a SimpleItemDescriptor
shall use simple type defined in XML schema (built in simple types), ONVIF schemas, or
vendor schemas. Similarly, the Type attribute of an ElementItemDescriptor shall match a
global element declaration of an XML schema.

The location of all schema files used to describe Message payloads are listed in the
GetEventPropertiesResponse message in Section 9.8.

3 Please note that the schema is included here for information only. [ONVIF Schema] contains the normative

schema definition.

ONVIF™ – 118 – ONVIF Core Spec. – Ver. 2.1.1

9.5.4.1 Message Description Example

The following code is an example of a Message Description corresponding to the Property
example of Section 9.5.3:

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescriptionD Name="VideoAnalyticsConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="Rule"
 Type="xs:string"/>
 </tt:Source>
 <tt:Key>
 <tt:SimpleItemDescription Name="ObjectId"
 Type="xs:integer"/>
 </tt:Key>
 <tt:Data>
 <tt:SimpleItemDescription Name="IsInside"
 Type="xs:boolean"/>
 </tt:Data>
</tt:MessageDescription>

9.5.5 Message Content Filter

In the Subscription request, a client can filter notifications by TopicExpression (see Section
9.7.3) and by MessageContent. For the latter, the [WS-BaseNotification] proposes the XPath
1.0 dialect. Due to the specific Message structure required by this specification, the
specification requires a subset of the XPath 1.0 syntax. An ONVIF compliant device shall
implement the subset of XPath 1.0. The corresponding dialect can be referenced with the
following URI:

 Dialect=http://www.onvif.org/ver10/tev/messageContentFilter/ItemFilter

Precedence and associativity:
The 'and' operation has higher precedence than the 'or' operation. Both 'and' and 'or'
operations are left associative.

The precedence and associativity of 'and' and 'or' operations in the following grammar
definition are identical to XPath 1.0 specifications.

The structure of the Expressions is as follows:

[1] Expression ::= BoolExpr | Expression ‘and’ Expression
 | Expression ‘or’ Expression | ‘(‘ Expression ‘)’ | ‘not’ ‘(‘ Expression ‘)’

[2] BoolExpr ::= ‘boolean’ ‘(‘ PathExpr ‘)’

[3] PathExpr ::= [‘//’Prefix?’SimpleItem‘ | ’//’Prefix?’ElementItem‘] NodeTest

[4] Prefix::= NamespacePrefix’:’ | ‘’

[5] NodeTest ::= ‘[‘ AttrExpr ‘]’

[6] AttrExpr ::= AttrComp | AttrExpr ‘and’ AttrExpr | AttrExpr ‘or‘ AttrExpr | ‘(‘ AttrExpr ‘)‘
 | ‘not’ ‘(‘ AttrExpr ‘)‘

ONVIF™ – 119 – ONVIF Core Spec. – Ver. 2.1.1

[7] AttrComp ::= Attribute ‘=’ ‘”’ String ‘”’

[8] Attribute ::= ‘@Name’ | ‘@Value’

This grammar allows testing the presence of Simple or ElementItems independent of the
group they belong to (Source, Key or Data). Furthermore, the Value of SimpleItems can be
checked. The SimpleItem and ElementItem Prefix namespace shall correspond to
“http://www.onvif.org/ver10/schema.

Finally, arbitrary boolean combinations of these tests are possible. The following expressions
can be formulated:

Return only notifications which contain a reference to VideoSourceConfiguration “1”

boolean(//tt:SimpleItem[@Name=”VideoSourceConfigurationToken” and
 @Value=”1”])

Return only notifications which do not contain a reference to a VideoAnalyticsConfiguration

not(boolean(//tt:SimpleItem[@Name=”VideoAnalyticsConfigurationToken
”]))

Return only notifications which do relate to VideoAnalyticsConfiguration “2” running on
VideoSourceConfiguration “1”

boolean(//tt:SimpleItem[@Name=”VideoAnalyticsConfigurationToken” and
 @Value=”2”])
and
boolean(//tt:SimpleItem[@Name=”VideoSourceConfigurationToken” and
 @Value=”1”])

Return only notifications which are related to VideoSourceConfiguration “1” but are not related
to VideoAnalyticsConfigurations

boolean(//tt:SimpleItem[@Name=”VideoSourceConfigurationToken” and
 @Value=”1”])
and
not(boolean(//tt:SimpleItem[@Name=”VideoAnalyticsConfigurationToken”
]))

Return only notifications when objects enter or appear in “myImportantField”

boolean(//tt:SimpleItem[@Name=”IsInside” and @Value=”true”])
and
boolean(//tt:SimpleItem[@Name=”Rule” and @Value=”myImportantField”])

9.6 Synchronization Point

Properties, introduced in section 9.4, inform a client about property creation, changes and
deletion in a uniform way. When a client wants to synchronize its properties with the
properties of the device, it can request a synchronization point which repeats the current
status of all properties to which a client has subscribed. The PropertyOperation of all
produced notifications is set to “Initialized” (see Section 9.5). The Synchronization Point is
requested directly from the SubscriptionManager which was returned in either the
SubscriptionResponse or in the CreatePullPointSubscriptionResponse. The property update is
transmitted via the notification transportation of the notification interface. The following
operation shall be provided by all Subscription Manager Endpoints:

Table 96: SetSynchronizationPoint command

SetSynchronizationPoint Access Class: READ_MEDIA

ONVIF™ – 120 – ONVIF Core Spec. – Ver. 2.1.1

Message name Description

SetSynchronizationPoint-
Request

This message is empty.

SetSynchronizationPoint-
Response

This message is empty.

Fault codes Description

 No command specific faults!

When a client uses the notification streaming interface, the client should use the
SetSynchronizationPoint operation defined in the ONVIF Media Service Specification.

9.7 Topic Structure

This standard extends the Topic framework defined in the [WS-Topics] specification. Section
9.7.1 describes an ONVIF Topic Namespace, which should be taken as a basis for vendor
specific topics. The Appendix 0 shows typical examples for such extensions. Section 9.7.2
defines an interface to topic properties. This interface shall be implemented by an ONVIF
compliant device. Section 9.7.3 incorporates the Message Description Language defined in
section 9.5.4 into the TopicSet structure. All topics grown from the ONVIF Topic Namespace
describes the type of a topic according to section 9.7.3. Section 9.7.3 defines the Topic
Expression Dialects which are supported by a device.

9.7.1 ONVIF Topic Namespace

The [WS-Topics] specification distinguishes between the definition of a Topic Tree belonging
to a certain Topic Namespace and the Topic Set supported by a certain Web Service. This
distinction allows vendors to refer to a common Topic Namespace while only using a portion
of the defined Topics.

If the Topic Tree of an existing Topic Namespace covers only a subset of the topics available
by a device, the Topic Tree can be grown by defining a new Topic Namespace. A new Topic
Namespace is defined by appending a new topic to an existing Topic Namespace as
described in the [WS-Topics] specification.

The following root topics are defined in the ONVIF Namespace. All notifications referring to
these topics shall use the Message Format as described in Section 9.5.2.

<wstop:TopicNamespace name="ONVIF"
 targetNamespace="http://www.onvif.org/ver10/topics" >
 <wstop:Topic name="Device"/>
 <wstop:Topic name="VideoSource"/>
 <wstop:Topic name="VideoEncoder"/>
 <wstop:Topic name="VideoAnalytics"/>
 <wstop:Topic name="RuleEngine"/>
 <wstop:Topic name="PTZController"/>
 <wstop:Topic name="AudioSource"/>
 <wstop:Topic name="AudioEncoder"/>
 <wstop:Topic name="UserAlarm"/>
<wstop:Topic name="MediaControl"/>
<wstop:Topic name="RecordingConfig"/>
<wstop:Topic name="RecordingHistory"/>
<wstop:Topic name="VideoOutput"/>
<wstop:Topic name="AudioOutput"/>
<wstop:Topic name="VideoDecoder"/>
<wstop:Topic name="AudioDecoder"/>
<wstop:Topic name=”Receiver”/>

ONVIF™ – 121 – ONVIF Core Spec. – Ver. 2.1.1

</wstop:TopicNamespace>

9.7.2 Topic Type Information

The type information is added below a topic element by adding a MessageDescription element
of type MessageDescriptionType defined in Section 9.5.4. Topic elements can be identified by
the wstop:topic attribute with value "true".

The following example demonstrates how Topics of a TopicSet are augmented with Message
Descriptions:

<tns1:RuleEngine wstop:topic="true">
 <tns1:LineDetector wstop:topic="true">
 <tns1:Crossed wstop:topic="true">
 <tt:MessageDescription>
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="VideoAnalyticsConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="Rule" Type="xs:string"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItemDescription Name="ObjectId" Type="xs:integer"/>
 </tt:Data>
 </tt:MessageDescription>
 </tns1:Crossed>
 </tns1:LineDetector>
 <tns1:FieldDetector wstop:topic="true">
 <tns1:ObjectsInside wstop:topic="true">
 <tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="VideoAnalyticsConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="Rule" Type="xs:string"/>
 </tt:Source>
 <tt:Key>
 <tt:SimpleItemDescription Name="ObjectId" Type="xs:integer"/>
 </tt;Key>
 <tt:Data>
 <tt:SimpleItemDescription Name="IsInside" Type="xs:boolean"/>
 </tt:Data>
 </tt:MessageDescription>
 </tns1:ObjectsInside>
 </tns1:FieldDetector>
</tns1:RuleEngine>

9.7.3 Topic Filter

An ONVIF compliant device shall support the Concrete Topic Expressions defined in the [WS-
Topics] specification. This specification defines the identification of a specific Topic within
Topic Trees. The following Dialect shall be specified when a Concrete Topic Expression is
used as TopicExpression of a Subscription Filter:

 http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete

The following Topic Expression syntax shall be supported by a device.

The syntax extends the Concrete Topic Expressions by an “or” operation and topic subtree
matching string. This extended syntax allows selection of an arbitrary TopicSet within a
single Subscription. The grammar is described in the same way as the Topic Expressions
of the [WS-Topics 1.3] specification:

[3] TopicExpression ::= TopicPath (‘|’ TopicPath)*

ONVIF™ – 122 – ONVIF Core Spec. – Ver. 2.1.1

[4] TopicPath ::= RootTopic ChildTopicExpression* ('//.’)?

[5] RootTopic ::= QName

If a namespace prefix is included in the RootTopic, it shall correspond to a valid Topic
Namespace definition and the local name shall correspond to the name of a root Topic
defined in that namespace.

[6] ChildTopicExpression ::= ‘/’ ChildTopicName

[7] ChildTopicName ::= QName | NCName

The NCName or local part of the QName shall correspond to the name of a Topic within the
descendant path from the RootTopic, where each forward slash denotes another level of child
Topic elements in the path.

In order to reference this TopicExpression Dialect, the following URI shall be used:

Dialect=http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet

If the TopicExpression ends with the characters “//.” this indicates that the TopicExpression

 matches a Topic sub-tree. For example:

 “tns1:RuleEngine/FieldDetector//.”

This identifies the sub-tree consisting of tns1:RuleEngine/FieldDetector and all its
descendents.

The following examples demonstrate the usage of the ConcreteSet topicExpression:

Look for notifications which have the VideoAnalytics topic as parent topic:

<wsnt:TopicExpression Dialect =

 "http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet" >

 tns1:VideoAnalytics//.

</wsnt:TopicExpression>

Look for notifications which have the VideoAnalytics topic or the RuleEngine as parent
topic:

<wsnt:TopicExpression Dialect =

 "http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet" >

 tns1:VideoAnalytics//.|tns1:RuleEngine//.

</wsnt:TopicExpression>

Look for notifications produced by either a LineDetector or a FieldDetector:

<wsnt:TopicExpression Dialect =

 "http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet">

tns1:RuleEngine/FieldDetector//.|tns1:RuleEngine/LineDetector//.

</wsnt:TopicExpression>

9.8 Get event properties

The [WS-BaseNotification] specification defines a set of optional WS-ResouceProperties. This
specification does not require the implementation of the WS-ResourceProperty interface.
Instead, the subsequent direct interface shall be implemented by an ONVIF compliant device

ONVIF™ – 123 – ONVIF Core Spec. – Ver. 2.1.1

in order to provide information about the FilterDialects, Schema files and topics supported by
the device.

Table 97: GetEventProperties command

GetEventProperties Access Class: READ_MEDIA

Message name Description

GetEventPropertiesRequest This is an empty message.

GetEventPropertiesResponse xs:anyURI TopicNamespaceLocation [1][unbounded]
xs:boolean FixedTopicSet [1][1]
wstop:TopicSetType TopicSet [1][1]
xs:anyURI TopicExpressionDialect [1][unbounded]
xs:anyURI MessageContentFilterDialect [1][unbounded]
xs:anyURI ProducerPropertiesFilterDialect [0][unbounded]
xs:anyURI MessageContentSchemaLocation [1][unbounded]

Fault codes Description

 No command specific faults!

An ONVIF compliant device shall respond and declare if its TopicSet is fixed or not, which
Topics are provided, and which Dialects are supported.

The following TopicExpressionDialects are mandatory for an ONVIF compliant device (see
Section 9.7.3):

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete

http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet

The following MessageContentFilterDialects are mandatory for the an ONVIF compliant
device(see Section 9.5.5):

http://www.onvif.org/ver10/tev/messageContentFilter/ItemFilter

This specification does not require the support of any ProducerPropertiesDialect by a device.

The Message Content Description Language, introduced in Section 9.5.4, allows referencing
of vendor-specific types. In order to ease the integration of such types into a client application,
the GetEventPropertiesResponse shall list all URI locations to schema files whose types are
used in the description of notifications, with MessageContentSchemaLocation elements. This
list shall at least contain the URI of the ONVIF schema file.

9.9 Capabilities

The capabilities reflect optional functions and functionality of a service. The information is
static and does not change during device operation. The following capabilites are available:

WSSubscriptionPolicySupport: Indication if the device supports the WS
Subscription policy according to Section 9.1.2

WSPullPointSupport: Indication if the device supports the WS Pull
Point according to Section 9.1.2

WSPausableSubscriptionManagerInterfaceSupport:
Indication if the device supports Indication if the
device supports the WS Pausable Subscription

ONVIF™ – 124 – ONVIF Core Spec. – Ver. 2.1.1

Manager Interface according to Section 9.1.2

Table 98: GetServiceCapabilities command

GetServiceCapabilities Access Class: PRE_AUTH

Message name Description

GetServiceCapabilitiesReque
st

This is an empty message.

GetServiceCapabilitiesRespo
nse

The capability response message contains the requested service
capabilities using a hierarchical XML capability structure.

tev:Capabilities Capabilities [1][1]

Fault codes Description

 No command specific faults!

9.10 SOAP Fault Messages

If a device encounters a failure while processing [WS-BaseNotification] messages from either
a client or Subscription Manager, then the device shall generate a SOAP 1.2 fault message.

All SOAP 1.2 fault messages shall be generated according to [WS-BaseNotification] and [WS-
Topics] specifications.

9.11 Notification example

The following example is a complete communication pattern for notifications. It uses the Real-
time Pull-Point Notification Interface to receive notifications.

9.11.1 GetEventPropertiesRequest

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl">
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/EventPortType/GetEventPropertiesRequest
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:GetEventProperties>
 </tet:GetEventProperties>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.2 GetEventPropertiesResponse

In this example, the device response uses the ONVIF topic namespace (the description can
be downloaded from http://www.onvif.org/onvif/ver10/topics/topicns.xml).

ONVIF™ – 125 – ONVIF Core Spec. – Ver. 2.1.1

The topic set does not change over time and consists of the single topic
tns1:RuleEngine/LineDetector/Crossed. The Message associated with this topic
contains information about the VideoSourceConfigurationToken, the
VideoAnalyticsConfigurationToken and the object which has crossed the line. The device
supports two TopicExpressionDialects.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wstop="http://docs.oasis-open.org/wsn/t-1"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl"
 xmlns:tns1="http://www.onvif.org/ver10/topics"
 xmlns:tt="http://www.onvif.org/ver10/schema">
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/EventPortType/GetEventPropertiesResponse
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:GetEventPropertiesResponse>
 <tet:TopicNamespaceLocation>
 http://www.onvif.org/onvif/ver10/topics/topicns.xml
 </tet:TopicNamespaceLocation>
 <wsnt:FixedTopicSet>
 true
 </wsnt:FixedTopicSet>
 <wstop:TopicSet>
 <tns1:RuleEngine>
 <tns1:LineDetector>
 <tns1:Crossed wstop:topic="true">
 <tt:MessageDescription>
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="VideoAnalyticsConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItemDescription Name="ObjectId"
 Type="xs:integer"/>
 </tt:Data>
 </tt:MessageDescription>
 </tns1:Crossed>
 </tns1:LineDetector>
 </tns1:RuleEngine>
 </wstop:TopicSet>
 <wsnt:TopicExpressionDialect>
 http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet
 </wsnt:TopicExpressionDialect>
 <wsnt:TopicExpressionDialect>
 http://docs.oasis-open.org/wsnt/t-1/TopicExpression/ConcreteSet
 </wsnt:TopicExpressionDialect>
 <wsnt:MessageContentFilterDialect>
 http://www.onvif.org/ver10/tev/messageContentFilter/ItemFilter
 </wsnt:MessageContentFilterDialect>
 <tt:MessageContentSchemaLocation>
 http://www.onvif.org/onvif/ver10/schema/onvif.xsd
 </tt:MessageContentSchemaLocation>
 </tet:GetEventPropertiesResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.3 CreatePullPointSubscription

A client can subscribe to specific notifications with the information from the TopicProperties.
The following XML example shows the subscription for notifications produced by the Rule

ONVIF™ – 126 – ONVIF Core Spec. – Ver. 2.1.1

Engine of the device. The client reacts only to notifications that reference
VideoAnalyticsConfiguration “2” and VideoSourceConfiguration “1”. The Subscription has a
timeout of one minute. If the subscription is not explicitly renewed or messages are not pulled
regularly, it will be terminated automatically after this time.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl"
 xmlns:tns1="http://www.onvif.org/ver10/topics">
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/EventPortType/CreatePullPointSubscriptionReq
uest
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:CreatePullPointSubscription>
 <tet:Filter>
 <wsnt:TopicExpression
 Dialect="http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet">
 tns1:RuleEngine//.
 </wsnt:TopicExpression>
 <wsnt:MessageContent
Dialect="http://www.onvif.org/ver10/tev/messageContentFilter/ItemFilter">
 boolean(//tt:SimpleItem[@Name="VideoAnalyticsConfigurationToken"
 and @Value="2"]) and
 boolean(//tt:SimpleItem[@Name="VideoSourceConfigurationToken"
 and @Value="1"])
 </wsnt:MessageContent>
 </tet:Filter>
 <tet:InitialTerminationTime>
 PT1M
 </tet:InitialTerminationTime>
 </tet:CreatePullPointSubscription>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.4 CreatePullPointSubscriptionResponse

When the device accepts the Subscription, it returns the
http://160.10.64.10/Subscription?Idx=0 URI which represents the Endpoint of this
Subscription. Additionally, the client is informed about the CurrentTime of the device and the
TerminationTime of the created Subscription.

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl">
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/EventPortType/CreatePullPointSubscription
Response
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:CreatePullPointSubscriptionResponse>
 <tet:SubscriptionReference>
 <wsa:Address>
 http://160.10.64.10/Subscription?Idx=0
 </wsa:Address>
 </tet:SubscriptionReference>
 <wsnt:CurrentTime>
 2008-10-09T13:52:59

ONVIF™ – 127 – ONVIF Core Spec. – Ver. 2.1.1

 </wsnt:CurrentTime>
 <wsnt:TerminationTime>
 2008-10-09T13:53:59
 </wsnt:TerminationTime>
 </tet:CreatePullPointSubscriptionResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.5 PullMessagesRequest

The client sends a PullMessagesRequest to the Endpoint given in the
CreatePullPointSubscriptionResponse to get Notifications corresponding to a certain
Subscription. The following sample request contains a Timeout of five (5) seconds and limits
the total number of messages in the response to two (2).

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl" >
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/PullPointSubscription/PullMessagesRequest
</wsa:Action>
 <wsa:To>http://160.10.64.10/Subscription?Idx=0</wsa:To>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:PullMessages>
 <tet:Timeout>
 PT5S
 </tet:Timeout>
 <tet:MessageLimit>
 2
 </tet:MessageLimit>
 </tet:PullMessages>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.6 PullMessagesResponse

The following PullMessageResponse contains two notifications which match the subscription.
The Response informs the client that two objects have crossed lines corresponding to rules
“MyImportantFence1” and “MyImportantFence2”.

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wstop="http://docs.oasis-open.org/wsn/t-1"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:tet="http://www.onvif.org/ver10/events/wsdl"
 xmlns:tns1="http://www.onvif.org/ver10/topics"
 xmlns:tt="http://www.onvif.org/ver10/schema">
 <SOAP-ENV:Header>
 <wsa:Action>
http://www.onvif.org/ver10/events/wsdl/PullPointSubscription/PullMessagesResponse
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tet:PullMessagesResponse>
 <tet:CurrentTime>
 2008-10-10T12:24:58
 </tet:CurrentTime>
 <tet:TerminationTime>
 2008-10-10T12:25:58
 </tet:TerminationTime>
 <wsnt:NotificationMessage>

ONVIF™ – 128 – ONVIF Core Spec. – Ver. 2.1.1

 <wsnt:Topic
Dialect="http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet">
 tns1:RuleEngine/LineDetector/Crossed
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="2008-10-10T12:24:57.321">
 <tt:Source>
 <tt:SimpleItem Name="VideoSourceConfigurationToken"
 Value="1"/>
 <tt:SimpleItem Name="VideoAnalyticsConfigurationToken"
 Value="2"/>
 <tt:SimpleItem Value="MyImportantFence1" Name="Rule"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItem Name="ObjectId" Value="15" />
 </tt:Data>
 </tt:Message>
 </wsnt:Message>
 </wsnt:NotificationMessage>
 <wsnt:NotificationMessage>
 <wsnt:Topic
Dialect="http://www.onvif.org/ver10/tev/topicExpression/ConcreteSet">
 tns1:RuleEngine/LineDetector/Crossed
 </wsnt:Topic>
 <wsnt:Message>
 <tt:Message UtcTime="2008-10-10T12:24:57.789">
 <tt:Source>
 <tt:SimpleItem Name="VideoSourceConfigurationToken"
 Value="1"/>
 <tt:SimpleItem Name="VideoAnalyticsConfigurationToken"
 Value="2"/>
 <tt:SimpleItem Value="MyImportantFence2" Name="Rule"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItem Name="ObjectId" Value="19"/>
 </tt:Data>
 </tt:Message>
 </wsnt:Message>
 </wsnt:NotificationMessage>
 </tet:PullMessagesResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.11.7 UnsubscribeRequest

A client has to terminate a subscription explicitly with an UnsubscribeRequest that the device
can immediately free resources. The request is directed to the Subscription Endpoint returned
in the CreatePullPointSubscriptionResponse.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2" >
 <SOAP-ENV:Header>
 <wsa:Action>
 http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/UnsubscribeRequest
 </wsa:Action>
 <wsa:To>http://160.10.64.10/Subscription?Idx=0</wsa:To>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <wsnt:Unsubscribe/>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

ONVIF™ – 129 – ONVIF Core Spec. – Ver. 2.1.1

9.11.8 UnsubscribeResponse

The Subscription Endpoint is no longer available once the device replies with an
UnsubscribeResponse.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2" >
 <SOAP-ENV:Header>
 <wsa:Action>
http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/UnsubscribeResponse
 </wsa:Action>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <wsnt:UnsubscribeResponse/>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.12 Service specific fault codes

The event service does not define any service specific faults except those defined in [WS-
BaseNotification].

10 Security

As is true for all network-oriented information technology, security is a most important subject
for network video communication. The security threat depends on the application. While some
applications are most vulnerable to network based attacks, other applications are not at all
sensitive. The cost for implementing security countermeasures varies depending on the type
of attacks intended to prevent. These facts imply that we cannot list general security
requirements on the network video product or system, but can try to find a reasonable level of
security requirements for devices conformant to this specification and to define basic security
mechanism that allows building secure network video systems.

The current specification defines security mechanisms on two communication levels:

 Transport level security

 Message level security

This specification adopts port-based authentication mechanism as follows.

 IEEE 802.1X

10.1 Transport level security

Transport level security protects the data transfer between the client and the server.
Transport Layer Security (TLS) is regarded as a mature standard for encrypted transport
connections to provide a basic level of communication security. The TLS protocol allows the
configuration of a mutually authenticated transport session as well as preserving the
confidentiality and the integrity protected transport.

A device conformant to this specification should support TLS 1.0 [RFC 2246] and related
specifications. The device should support TLS 1.1 [RFC 4346]. The device may support TLS
1.2 [RFC 5246].

A device should support TLS for protection of all of the ONVIF services it provides. A device
also should support TLS for protection of media streams for the RTP/RTSP/HTTPS tunnel

ONVIF™ – 130 – ONVIF Core Spec. – Ver. 2.1.1

option as defined in Section 11. This specification profiles a particular implementation of TLS
and other relevant specifications that can be used with TLS.

A client should support TLS 1.0 [RFC 2246] and TLS 1.1 [RFC 4346]. The client may support
TLS 1.2 [RFC 5246].

10.1.1 Supported cipher suites

A device that supports TLS shall support all of the following cipher suites [RFC 2246], [RFC
3268]:

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_NULL_SHA

If a client supports TLS, then it shall support the following cipher suites:

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_NULL_SHA

10.1.2 Server authentication

A device that supports TLS shall support server authentication using TLS. The device shall
support processing of X.509 server certificates. The RSA key length shall be at least 1024
bits.

A client should support server authentication using TLS.

This specification does not provide a full server certificate generation and Certificate Authority
(CA) model. However, device management commands for device certificate retrieval and
download are defined in Section 8.4.

The details of the server private key or keys secure bootstrapping mechanisms are outside
the scope of the current specification. However, commands for on board key generation are
defined in Section 8.4.

10.1.3 Client authentication

A device that supports TLS should support client authentication. Client authentication can be
enabled/disabled with a device management command as described in Section 8.4

A device that supports TLS shall include the RSA certificate type (rsa_sign, for example) in
the certificate request [RFC 2246] for client certificates, and shall support verification of the
RSA client certificate and signature.

A client should support client authentication. If client authentication is supported, the client
shall support RSA client certificate and signature and shall use an RSA key length of at least
1024 bits.

The trusted CA bootstrapping mechanisms are outside the scope of the current specification.
Future versions of the specification might define standardized bootstrapping mechanisms.

ONVIF™ – 131 – ONVIF Core Spec. – Ver. 2.1.1

10.2 Message level security

TLS allows point-to-point confidentiality and integrity. Web Services, however, allow a more
flexible communication pattern with intermediate nodes. In such situations TLS cannot provide
end-to-end security. Furthermore, in order to implement user based access control on
command level for Web Services, there is a need to verify the origin of each SOAP message.
How this verification can be implemented is profiled in Section 5.12.

ONVIF™ – 132 – ONVIF Core Spec. – Ver. 2.1.1

10.3 IEEE 802.1X

IEEE 802.1X is an IEEE standard for port based network access control for the purpose of
providing authentication and authorization of the devices attached to LAN ports. It
makes use of the physical access characteristics of IEEE 802 LAN infrastructures in
order to provide a means of authenticating and authorizing devices attached to a LAN port
that has point-to-point connection characteristics, and of preventing access to that port in
cases in which the authentication and authorization process fails.

This specification recommends the adoption of IEEE 802.1X for port based authentication for
wireless networks. A device that supports IEEE 802.1X shall support EAP-PEAP/MSCHAPv2
type as a supported EAP method. The device may also support other EAP methods such as
EAP-MD5, EAP-TLS and EAP-TTLS types.

This specification defines a set of commands to configure and manage the IEEE 802.1X
configuration, please refer to section 8.4.7.

ONVIF™ – 133 – ONVIF Core Spec. – Ver. 2.1.1

Annex A. Notification topics

(informative)

A.1 Media configuration topics

For the following entities of the Media Configuration, the ONVIF TopicNamespace provides
the following topics:

tns1:MediaConfiguration/Profile
tns1:MediaConfiguration/VideoSourceConfiguration
tns1:MediaConfiguration/AudioSourceConfiguration
tns1:MediaConfiguration/VideoEncoderConfiguration
tns1:MediaConfiguration/AudioEncoderConfiguration
tns1:MediaConfiguration/VideoAnalyticsConfiguration
tns1:MediaConfiguration/PTZConfiguration
tns1:MediaConfiguration/MetaDataConfiguration

Each of these topics represents a property. A client subscribing to one of these topics will be
notified about changes, creation and deletion of the corresponding entity.

The Message structures of the different topics are specified next using the
MessageDescription Language introduced in Section 9.

A.1.1 Profile

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="ProfileToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:Profile"/>
 </tt:Data>
</tt:MessageDescription>

A.1.2 VideoSourceConfiguration

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:VideoSourceConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.3 AudioSourceConfiguration

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="AudioSourceConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:AudioSourceConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

ONVIF™ – 134 – ONVIF Core Spec. – Ver. 2.1.1

A.1.4 VideoEncoderConfiguration

<tt:MessageDescription iIsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoEncoderConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:VideoEncoderConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.5 AudioEncoderConfiguration

<tt:MessageDescription iIsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="AudioEncoderConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:AudioEncoderConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.6 VideoAnalyticsConfiguration

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="VideoAnalyticsConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:VideoAnalyticsConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.7 PTZConfiguration

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="PTZConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:PTZConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.8 MetaDataConfiguration

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="MetaDataConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:ElementItemDescription Name="Config"
 Type="tt:MetaDataConfiguration"/>
 </tt:Data>
</tt:MessageDescription>

A.1.9 Device management topics

The Device Topic contains the following Sub-topics defined in the ONVIF TopicNamespace:

tns1:Device/Trigger/Relay

ONVIF™ – 135 – ONVIF Core Spec. – Ver. 2.1.1

tns1:Device/OperationMode/ShutdownInitiated
tns1:Device/OperationMode/UploadInitiated
tns1:Device/HardwareFailure/FanFailure
tns1:Device/HardwareFailure/PowerSupplyFailure
tns1:Device/HardwareFailure/StorageFailure
tns1:Device/HardwareFailure/TemperatureCritical

Only the Relay defines a message payload. The other topics reply with an empty message.

A.1.10 Relay

<tt:MessageDescription IsProperty="true">
 <tt:Source>
 <tt:SimpleItemDescription Name="RelayToken" Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItemDescription Name="LogicalState"
Type="tt:RelayLogicalState"/>
 </tt:Data>
</tt:MessageDescription>

A.1.11 PTZ Controller Topics

The PTZ service specifies handling of PTZ presets. Since the move operations are non-
blocking, a client is not informed when the PTZ preset has been reached. Therefore, the
following events are introduced which inform subscribers about the status of preset
movements.

tns1:PTZController/PTZPresets/Invoked
tns1:PTZController/PTZPresets/Reached
tns1:PTZController/PTZPresets/Aborted
tns1:PTZController/PTZPresets/Left

The typical sequence of events is that first a client requests a certain Preset. When the device
accepts this request, it will send out an Invoked event. The Invoked event has to follow either
a Reached event or an Aborted event. The former is used when dome was able to reach the
invoked preset position, the latter in any other case. A Reached event has to follow a Left
event, as soon as the dome moves away from the preset position.

The Message structure of these events is given by the following Message Description (see
chapter 12):

<tt:MessageDescription>
 <tt:Source>
 <tt:SimpleItemDescription Name="PTZConfigurationToken"
 Type="tt:ReferenceToken"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItemDescription Name="PresetToken" Type="tt:ReferenceToken"/>
 <tt:SimpleItemDescription Name="PresetName" Type="tt:Name"/>
 </tt:Data>
</tt:MessageDescription>

ONVIF™ – 136 – ONVIF Core Spec. – Ver. 2.1.1

Annex B. Capability List of GetCapabilities

(normative)

This normative annex describes the capabilities as defined with the 2.0 specification. Devices must
provide the appropriate set of elements to ensure backward compatibility.

Category Capability Description

XAddr The address to the analytics
service. If this field is empty the
device supports analytics but
not the rules or module
interfaces.

Analytics

RuleSupport Indication if the device supports
rules interface and rules syntax
as specified in the Video
Analytics Service Specification.

AnalyticsModuleSupport Indication if the device supports
the scene analytics module
interface as specified in the
Video Analytics Service
Specification.

Device XAddr The address to the device
service.

IPFilter Indication if the device supports
IP filtering control using the
commands in Section 8.2.18,
8.2.19, 8.2.20 and 8.2.21.

Device – Network

ZeroConfiguration Indication if the device supports
zero configuration according to
the commands in Section 8.2.16
and Section 8.2.17.

IPVersion6 Indication if the device supports
IP version 6.

DynDNS Indication if the device supports
Dynamic DNS configuration
according to Section 8.2.8and
Section 8.2.9 .

 Dot11Configuration Indication if the device supports
IEEE802.11 configuration as
specified in Section 8.2.22

Device – System DiscoveryResolve Indication if the device
responses to resolve requests
as described in Section 7.3.4.

ONVIF™ – 137 – ONVIF Core Spec. – Ver. 2.1.1

DiscoveryBye Indication if the device sends
bye messages as described in
Section 7.3.5

RemoteDiscovery Indication if the device supports
remote discovery support as
specified in Section 7.4.

SupportedVersions List of the device supported
ONVIF specification versions.

SystemBackup Indication if the device supports
system backup and restore as
specified in Section 8.3.3 and
Section 8.3.5

FirmwareUpgrade Indication if the device supports
firmware upgrade as specified in
Section 8.3.10.

SystemLogging Indication if the device supports
system log retrieval as specified
in Section 8.3.11.

HttpSystemBackup Indication if the device supports
system backup and restore
using HTTP GET and POST.

HttpFirmwareUpgrade

Indication if the device supports
firmware upgrade using HTTP
POST.

HTTPSystemLogging Indication if the device supports
retrieval of system log using
HTTP Get, see section 8.3.2.

HTTPSupportInformation Indication if the device supports
retrieval of support information
using HTTP Get, see section
8.3.2.

InputConnectors The number of input connectors. Device – IO

RelayOutputs The number of relay outputs.

Auxiliary Indication of support for
auxiliary service along with list
of supported auxiliary
commands

TLS1.0 Support of TLS 1.0. Device – Security

TLS1.1 Support of TLS 1.1.

TLS1.2 Support of TLS 1.2.

ONVIF™ – 138 – ONVIF Core Spec. – Ver. 2.1.1

OnboardKeyGeneration Indication if the device supports
onboard key generation and
creation of self-signed
certificates as specified in
Section 8.4.8.

AccessPolicyConfig Indication if the device supports
retrieving and loading device
access control policy according
to Section 8.4.1 and Section
8.4.2.

X.509Token Indication if the device supports
the WS-Security X.509 token
[WS-X.509Token].

SAMLToken Indication if the device supports
the WS-Security SAML token
[WS-SAMLToken].

KerberosToken Indication if the device supports
the WS-Security Kerberos token
[WS-KerberosToken].

RELToken Indication if the device supports
the WS-Security REL token
[WS-RELToken].

Dot1X Indication if the device supports
IEEE 802.1X port-based
network authentication

SupportedEAPMethod List of supported EAP Method
types. The numbers correspond
to the IANA [EAP-Registry].

RemoteUserHandling Indication if device supports
remote user handling and the
corresponding methods defined
in section 8.4.21 and 8.4.22.

XAddr The address to the event
service

Event

WSSubscriptionPolicySupport Indication if the device supports
the WS Subscription policy
according to Section9.1.2

WSPullPointSupport Indication if the device supports
the WS Pull Point according to
Section 9.1.2

WSPausableSubscription-
ManagerInterfaceSupport

Indication if the device supports
the WS Pausable Subscription
Manager Interface according to
Section9.1.2

ONVIF™ – 139 – ONVIF Core Spec. – Ver. 2.1.1

Imaging XAddr The address to the imaging
service

Media XAddr The address to the media
service.

RTPMulticast Indication of support of UDP
multicasting as described in the
ONVIF Streaming Specification.

Media – streaming

RTP_TCP Indication if the device supports
RTP over TCP, see ONVIF
Streaming Specification.

RTP_RTSP_TCP Indication if the device supports
RTP/RTSP/TCP transport, see
ONVIF Streaming Specification.

Media - profile MaximumNumberOfProfiles The maximum Number of
MediaProfiles the device
supports.

PTZ XAddr The address to the PTZ service.

XAddr The address to the receiver
service.

Receiver

RTP_Multicast Indication if the device supports
receiving of RTP Multicast.

RTP_TCP Indication if the device supports
receiving of RTP over TCP.

RTP_RTSP_TCP Indication if the device supports
receiving of RTP over RTSP
over TCP

SupportedReceivers The maximum number of
receivers the device supports.

MaximumRTSPURILength The maximum length allowed for
RTSP URIs.

XAddr The address to the recording
control service.

Recording

DynamicRecordings Indication if the device supports
dynamic creation and deletion of
recordings, see ONVIF
Recording Configuration
Specification.

DynamicTracks Indication if the device supports
dynamic creation and deletion of
tracks, see ONVIF Recording

ONVIF™ – 140 – ONVIF Core Spec. – Ver. 2.1.1

Configuration Specification.

DeleteData Indication if the device supports
explicit deletion of data, see
ONVIF Recording Configuration
Specification.

Search

XAddr The address to the recording
search service.

 MetadataSearch Indication if the device supports
generic search of recorded
metadata as defined in the
ONVIF Recording Search
Specification..

Replay XAddr The address to the replay
service.

Analytics Device

XAddr The address to the analytics
device service of the device.

Display XAddr The address to the display
service.

Display - layout FixedLayout Indication that the SetLayout
command supports only
predefined layouts..

Device IO XAddr The address to the device IO
service.

 VideoSources The number of video inputs

 VideoOutputs The number of video outputs

 AudioSources The number of audio inputs

 AudioOutputs The number of audio outputs

 RelayOutputs The number of relay outputs.

ONVIF™ – 141 – ONVIF Core Spec. – Ver. 2.1.1

Annex C. Bibliography

[EAP-Registry] Extensible Authentication Protocol (EAP) Registry

[http://www.iana.org/assignments/eap-numbers/eap-numbers.xml]

ONVIF Security Recommendations White Paper

[http://www.onvif.org/portals/3/documents/whitepapers/ONVIF_Security_Recommendations_ver10.pdf]

ONVIF PTZ Coordinate Spaces White Paper

[http://www.onvif.org/Portals/0/documents/whitepapers/ONVIF_PTZ_coordinate_spaces.pdf]

RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee et al., August 1998
[URL:http://www.ietf.org/rfc/rfc2396.txt]

[UDDI API ver2, “UDDI Version 2.04 API Specification UDDI Committee Specification, 19 July 2002”,
OASIS standard, 19 July 2002 [URL:http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf]

[UDDI Data Structure ver2] “UDDI Version 2.03 Data Structure Reference UDDI Committee
Specification”, OASIS standard, 19 July 2002.

URL:http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.pdf

[WS-KerberosToken] “Web Services Security Kerberos Token Profile 1.1”, OASIS Standard, ,1 February
2006.

URL:http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf

[WS-SAMLToken] “Web Services Security: SAML Token Profile 1.1”, OASIS Standard, 1 February
2006.

URL:http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

[WS-X.509Token] “Web Services Security X.509 Certificate Token Profile 1.1”, OASIS Standard,1
February 2006.

URL:http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf

[WS-RELToken] “Web Services Security Rights Expression Language (REL) Token Profile 1.1”, OASIS
Standard, 1 February 2006

URL:http://www.oasis-open.org/committees/download.php/16687/oasis-wss-rel-token-profile-1.1.pdf

[X.680] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information

Technology - Abstract Syntax Notation One (ASN.1): Specification of Basic

Notation.

[X.681] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information

Technology - Abstract Syntax Notation One (ASN.1): Information Object

Specification.

[X.682] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information

Technology - Abstract Syntax Notation One (ASN.1): Constraint Specification.

[X.683] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information

Technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1

Specifications.

[X.690] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information

Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules

(DER).

 [ONVIF DM WSDL] ONVIF Device Management Service WSDL, ver 2.1, 2011.

URL:http://www.onvif.org/ver10/device/wsdl/devicemgmt.wsdl

[ONVIF Event WSDL] ONVIF Event Service WSDL, ver 2.1, 2011.

URL:http://www.onvif.org/ver10/event/wsdl/event.wsdl

 [ONVIF DP WSDL] ONVIF Remote Discovery Proxy Services WSDL, ver 2.0, 2010.

URL:http://www.onvif.org/ver10/network/wsdl/remotediscovery.wsdl

http://www.iana.org/assignments/eap-numbers/eap-numbers.xml
http://www.onvif.org/portals/3/documents/whitepapers/ONVIF_Security_Recommendations_ver10.pdf%5D
http://www.onvif.org/Portals/0/documents/whitepapers/ONVIF_PTZ_coordinate_spaces.pdf
http://www.ietf.org/rfc/rfc2396.txt
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16687/oasis-wss-rel-token-profile-1.1.pdf
http://www.onvif.org/ver10/device/wsdl/devicemgmt.wsdl
http://www.onvif.org/ver10/event/wsdl/event.wsdl
http://www.onvif.org/ver10/network/wsdl/remotediscovery.wsdl

ONVIF™ – 142 – ONVIF Core Spec. – Ver. 2.1.1

[ONVIF Schema] ONVIF Schema, ver 2.0, 2010.

URL:http://www.onvif.org/onvif/ver10/schema/onvif.xsd

[ONVIF Topic Namespace] ONVIF Topic Namespace XML, ver 2.0, 2010.

URL:http://www.onvif.org/ver10/topics/topicns.xml

WS-I, Basic Profile Version 2.0 – Working Group Draft, C. Ferris (Ed), A. Karmarkar (Ed) and P. Yendluri
(Ed), October 2007.

<http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html>

http://www.onvif.org/onvif/ver10/schema/onvif.xsd
http://www.onvif.org/ver10/topics/topicns.xml

ONVIF™ – 143 – ONVIF Core Spec. – Ver. 2.1.1

Annex D. Revision History

Rev. Date Editor Changes

2.1 Jul-2011 Hans Busch Separated non Core services.
Change Request 52, 56, 57, 58, 61, 64, 69, 88, 154, 200,
224, 235, 243, 244, 245, 246, 248, 253

2.1.1 Jan-2012 Hans Busch Change Request 242, 263, 280, 286, 329, 335, 362, 433,
501, 512, 535, 536, 540, 555 - 562, 564, 569, 581, 587

	1 Scope
	2 Normative references
	3 Terms and Definitions
	3.1 Definitions
	3.2 Abbreviations

	4 Overview
	4.1 Web Services
	4.2 IP configuration
	4.3 Device discovery
	4.4 Profiles
	4.5 Device management
	4.5.1 Capabilities
	4.5.2 Network
	4.5.3 System
	4.5.4 Retrieval of System Information
	4.5.5 Firmware Upgrade
	4.5.6 System Restore
	4.5.7 Security

	4.6 Event handling
	4.7 Security

	5 Web Services framework
	5.1 Services overview
	5.1.1 Services requirements

	5.2 WSDL overview
	5.3 Namespaces
	5.4 Types
	5.5 Messages
	5.6 Operations
	5.6.1 One-way operation type
	5.6.2 Request-response operation type

	5.7 Port Types
	5.8 Binding
	5.9 Ports
	5.10 Services
	5.11 Error handling
	5.11.1 Protocol errors
	5.11.2 SOAP errors
	5.11.2.1 Generic faults
	5.11.2.2 Specific faults
	5.11.2.3 HTTP errors

	5.12 Security
	5.12.1 User-based access control
	5.12.1.1 Default Access Policy

	5.12.2 Username token profile
	5.12.2.1 Password derivation
	5.12.2.1.1 Example

	6 IP configuration
	7 Device discovery
	7.1 General
	7.2 Modes of operation
	7.3 Discovery definitions
	7.3.1 Endpoint reference
	7.3.2 Hello
	7.3.2.1 Types
	7.3.2.2 Scopes
	7.3.2.2.1 Example

	7.3.2.3 Addresses

	7.3.3 Probe and Probe Match
	7.3.4 Resolve and Resolve Match
	7.3.5 Bye
	7.3.6 SOAP Fault Messages

	7.4 Remote discovery extensions
	7.4.1 Network scenarios
	7.4.2 Discover proxy
	7.4.2.1 Direct DP address configuration
	7.4.2.2 DNS service record lookup

	7.4.3 Remote Hello and Probe behaviour
	7.4.4 Client behaviour
	7.4.4.1 Client home DP configuration

	7.4.5 Security
	7.4.5.1 Local discovery
	7.4.5.2 Remote discovery

	8 Device management
	8.1 Capabilities
	8.1.1 Get WSDL URL
	8.1.2 Capability exchange
	8.1.2.1 GetServices
	8.1.2.2 GetServiceCapabilities
	8.1.2.3 GetCapabilities

	8.2 Network
	8.2.1 Get hostname
	8.2.2 Set hostname
	8.2.3 Set hostname from DHCP
	8.2.4 Get DNS settings
	8.2.5 Set DNS settings
	8.2.6 Get NTP settings
	8.2.7 Set NTP settings
	8.2.8 Get dynamic DNS settings
	8.2.9 Set dynamic DNS settings
	8.2.10 Get network interface configuration
	8.2.11 Set network interface configuration
	8.2.12 Get network protocols
	8.2.13 Set network protocols
	8.2.14 Get default gateway
	8.2.15 Set default gateway
	8.2.16 Get zero configuration
	8.2.17 Set zero configuration
	8.2.18 Get IP address filter
	8.2.19 Set IP address filter
	8.2.20 Add an IP filter address
	8.2.21 Remove an IP filter address
	8.2.22 IEEE 802.11 configuration
	8.2.22.1 SSID
	8.2.22.2 Station Mode
	8.2.22.3 Multiple wireless network configuration
	8.2.22.4 Security configuration
	8.2.22.4.1 None mode
	8.2.22.4.2 PSK mode
	8.2.22.4.3 IEEE 802.1X-2004 Mode

	8.2.22.5 Get Dot11 capabilities
	8.2.22.6 Get IEEE 802.11 Status
	8.2.22.7 Scan Available IEEE 802.11 Networks

	8.3 System
	8.3.1 Device Information
	8.3.2 Get System URIs
	8.3.3 Backup
	8.3.4 Restore
	8.3.5 Start system restore
	8.3.6 Get system date and time
	8.3.7 Set system date and time
	8.3.8 Factory default
	8.3.9 Firmware upgrade
	8.3.10 Start firmware upgrade
	8.3.11 Get system logs
	8.3.12 Get support information
	8.3.13 Reboot
	8.3.14 Get scope parameters
	8.3.15 Set scope parameters
	8.3.16 Add scope parameters
	8.3.17 Remove scope parameters
	8.3.18 Get discovery mode
	8.3.19 Set discovery mode
	8.3.20 Get remote discovery mode
	8.3.21 Set remote discovery mode
	8.3.22 Get remote DP addresses
	8.3.23 Set remote DP addresses

	8.4 Security
	8.4.1 Get access policy
	8.4.2 Set access policy
	8.4.3 Get users
	8.4.4 Create users
	8.4.5 Delete users
	8.4.6 Set users settings
	8.4.7 IEEE 802.1X configuration
	8.4.7.1 Create IEEE 802.1X configuration
	8.4.7.2 Set IEEE 802.1X configuration
	8.4.7.3 Get IEEE 802.1X configuration
	8.4.7.4 Get IEEE 802.1X configurations
	8.4.7.5 Delete IEEE 802.1X configuration

	8.4.8 Create self-signed certificate
	8.4.9 Get certificates
	8.4.10 Get CA certificates
	8.4.11 Get certificate status
	8.4.12 Set certificate status
	8.4.13 Get certificate request
	8.4.14 Get client certificate status
	8.4.15 Set client certificate status
	8.4.16 Load device certificate
	8.4.17 Load device certificates in conjunction with its private key
	8.4.18 Get certificate information request
	8.4.19 Load CA certificates
	8.4.20 Delete certificate
	8.4.21 Get remote user
	8.4.22 Set remote user
	8.4.23 Get endpoint reference

	8.5 Input/Output (I/O)
	8.5.1 Get relay outputs
	8.5.2 Set relay output settings
	8.5.3 Trigger relay output
	8.5.4 Auxiliary operation

	8.6 Service specific fault codes

	9 Event handling
	9.1 Basic Notification Interface
	9.1.1 Introduction
	9.1.2 Requirements

	9.2 Real-time Pull-Point Notification Interface
	9.2.1 Create pull point subscription
	9.2.2 Pull messages

	9.3 Notification Streaming Interface
	9.4 Properties
	9.4.1 Property Example

	9.5 Notification Structure
	9.5.1 Notification information
	9.5.1.1 Event Example

	9.5.2 Message Format
	9.5.3 Property example, continued
	9.5.4 Message Description Language
	9.5.4.1 Message Description Example

	9.5.5 Message Content Filter

	9.6 Synchronization Point
	9.7 Topic Structure
	9.7.1 ONVIF Topic Namespace
	9.7.2 Topic Type Information
	9.7.3 Topic Filter

	9.8 Get event properties
	9.9 Capabilities
	9.10 SOAP Fault Messages
	9.11 Notification example
	9.11.1 GetEventPropertiesRequest
	9.11.2 GetEventPropertiesResponse
	9.11.3 CreatePullPointSubscription
	9.11.4 CreatePullPointSubscriptionResponse
	9.11.5 PullMessagesRequest
	9.11.6 PullMessagesResponse
	9.11.7 UnsubscribeRequest
	9.11.8 UnsubscribeResponse

	9.12 Service specific fault codes

	10 Security
	10.1 Transport level security
	10.1.1 Supported cipher suites
	10.1.2 Server authentication
	10.1.3 Client authentication

	10.2 Message level security
	10.3 IEEE 802.1X

	Annex D. Revision History

